'THERMAL RADIATION PHENOMENA
 Radiation Hydrodynamics
 of High Temperature Air

Edited by

R. K. M. Landshoff

Work performed under contract
DA-49-146-XZ-198
DASA Subtask RLN5015

Abstract

This report introduces the reader to radiation hydrodynamics (RH) and discusses its application to fireballs in the atmosphere. After formulating the basic equations of RH, special attention is given to the radiative transfer problem. Several methods for solving the equations of transfer are touched upon but special emphasis is placed on the two stream method with a frequency averaging procedure, which is specifically designed for use with finite zone sizes. A version of the FIREBALL code which utilizes this approach is described. The physics of fireballs is illustrated with the example of a one kiloton detonation at sea level density and without interference from the ground. Some remarks are made on scaling procedures for extending the results to higher yields and altitudes. Estimates are made of the validity of the models.

FOREWORD

"Thermal radiation" is electromagnetic radiation emitted by matter in a state of thermal excitation. The energy density of such radiation in an enclosure at constant temperature is given by the well known Planck formula. The importance of thermal radiation in physical problems increases as the temperature is raised. At moderate temperatures (say, thousands of degrees Kelvin) its role is primarily one of transmitting energy; whereas at high temperatures (say, millions of degrees Kelvin) the energy density of the radiation field itself becomes important as well. If thermal radiation must be considered explicitly in a problem, the radiative properties of the matter must be known. In the simplest order of approximation, it can be assumed that the matter is in thermodynamic equilibrium "locally" (a condition called local thermodynamic equilibrium, or LTE), and all of the necessary radiative properties can be defined, at least in principle. Of course whenever thermal radiation must be considered, the medium which contains it inevitably has pressure and density gradients and the treatment requires the use of hydrodynamics. Hydrodynamics with explicit consideration of thermal radiation is called "radiation hydrodynamics".

In the past twenty years or so, many radiation hydrodynamic problems involving air have been studied. In this work a great deal of effort has gone into calculations of the equilibrium properties of air. Both thermodynamic and radiative properties have been calculated. It has been generally believed that the basic theory is well enough understood that such calculations yield valid results, and the limited experimental checks which are possible seem to support this hypothesis. The advantage of having sets of tables which are entirely calculated is evident: the calculated quantities are self-consistent on the basis of some set of assumptions, and they can later be improved if calculational techniques are improved, or if better assumptions can be made.

The origin of this set of books was in the desire of a number of persons interested in the radiation hydrodynamics of air to have a good source of reliable information on basic air properties. A series of books dealing with both theoretical and practical aspects was envisaged. As the series materialized, it was thought appropriate to devote the first three volumes to the equilibrium properties of air. They are:

The Equilibrium Thermodynamic Properties of Air, by F. R. Gilmore

The Radiative Properties of Heated Air, by B. H. Armstrong and R. W. Nicholls

Tables of Radiative Properties of Air, by Lockheed Staff

The first volume contains a set of tables along with a detailed discussion of the basic models and techniques used for their computation. Because of the size of the related radiative tables and text, two volumes were considered necessary. The first contains the text, and the second the tables. It is hoped that these volumes will be widely useful, but because of the emphasis on very high temperatures it is clear that they will be most attractive to those concerned with nuclear weapons phenomenology, reentry vehicles, etc.

Our understanding of kinetic phenomena, long known to be important and at present in a state of rapid growth, is not as easy to assess as are equilibrium properties. Severe limitations had to be placed on choice of material. The fourth volume is devoted to general aspects of this topic. It is:

Excitation and Non Equilibrium Phenomena in Air, by Landshoff, et al.

It provides material on the more important processes involved in the excitation of air, criteria for the validity of LTE and special radiative effects.

A discussion of radiation hydrodynamics was felt to be necessary and the fifth volume which deals with this topic is:

Radiation Hydrodynamics of High Temperature Air, by Landshoff, Hillendahl, et al.

It reviews the basic theory of radiation hydrodynamics and discusses the application to fireballs in the atmosphere.

The choice of material for these last two volumes was made with an eye to the needs of the principal users of the other three volumes.

Most of the work on which these volumes are based was supported by the United States Government through various agencies of the Defense Department and the Atomic Energy Commission. The actual preparation of the volumes was largely supported by the Defense Atomic Support Agency.

We are indebted to many authors and organizations for assistance and we gratefully acknowledge their cooperation. We are particularly grateful to the RAND Corporation for permission to use works of F. R. Gilmore and H. L. Brode and to the IBM Corporation for permission to use some of the work of B. H. Armstrong . Most of the other authors are employed by the Lockheed Missiles and Space Company, in some cases as consultants.

Finally, we would like to acknowledge the key role of Dr. R. E. Meyerott of LMSC in all of this effort, from the initial conception to its realization. We are particularly grateful to him for his constant advice and encouragement.

Criticism and constructive suggestions are invited from all readers of these books. We understand that much remains to be done in this field, and we hope that the efforts represented by this work will be a stimulus to its development.

The Editors
J. L. Magee
H. Aroeste
R. K. M. Landshoff

Preface

This volume reviews the basic theory of radiation hydrodynamics and discusses the application to fireballs in the atmosphere. The first chapter starts with a formulation of the basic equations and goes on to discuss schemes for translating these impossibly difficult equations into manageable computing procedures. As a companion to this chapter we have added Appendix A with a version of Hillendahl's FIREBALL code, which runs without inputs of a classified nature.

Chapter 2 deals with the physics of fireballs. The main discussion is devoted to the description of a one kiloton detonation at sea level. That section has nearly all been written by H. L. Brode of the RAND Corporation but a few passages have been added by the editor. One of these deals with opaque precursors to shocks whose significance to the thermal output was noted by Hillendahl since the original version was written. The section on other yield and altitudes was also written by the editor.

The summary chapter examines the reliability of the results and how this is affected by approximations, incomplete basic information and other deficiencies in the present state of the art.

I would like to thank Dr. H. L. Brode for his contribution and the RAND Corporation for permission to include his work in this volume.

R. K. M. Landshoff

Contents

Chapter 1. Radiation Hydrodynamics
(R. W. Hillendahl, R. K. M. Landshoff) 1
1.1 Introduction 1
1.2 Basic equations of radiation hydrodynamics 3
1.3 Average absorption coefficients 8
1.4 Solution of the equation of transfer 10
1.5 Finite difference equations 15
Chapter 2. The Physics of Fireballs
(H. L. Brode, R. K. M. Landshoff) 36
2.1 Introduction 36
2.2 One kiloton at sea level 37
2.3 Other yields and altitudes 58
Chapter 3. Summary (R. K. M. Landshoff) 74
3.1 Equation of state 74
3.2 Absorption coefficients 75
3.3 Radiation hydrodynamics codes 78
3.4 .Deviations from LTE 80
Appendix A. A Radiation-Hydrodynamics Code (R. W. Hillendahl) 83
A. 1 Introduction 83
A. 2 Reading FORTRAN 96
A. 3 The computational scheme 101
A. 4 Data printout routines 109
A. 5 Variation of the number of zones in use 114
A. 6 Hydrodynamics routine 117
A. 7 Equation of state routine 120
A. 8 Radiative properties routine 121
A. 9 Radiative flux routine 126
A. 10 Code listing 128

Chapter 1. RADIATION HYDRODYNAMICS

1.1 Introduction

A nuclear detonation deposits a large amount of heat energy in the air around it. The heating phase is of relatively short duration since the energy arrives in the form of X -rays which come either directly from the surface of the exploding bomb or from the shock heated air in the immediate vicinity of that surface.

Following the X-ray deposition the air approaches local thermodynamic equilibrium (LTE). The method of calculating the subsequent explosion history which is discussed in this chapter ignores this period where the air relaxes to LTE. Before we proceed we take a short look at the validity of that assumption.

The kinetics of relaxation processes has been discussed in Chapter 6, (4)* . The relaxation time depends on the ambient air density and on the final temperature as shown in Fig. 6.1 (4).

For a detonation at sea level practically all the energy deposited by X-rays gets stuck in a relatively small volume and raises the temperature to very high values. Under these conditions relaxation times are very short. For a detonation at a high altitude a sizeable fraction of the X-ray energy is deposited at large distances and produces a lesser temperature rise because of the inverse square drop of the flux density. The lower air density and the lower temperature both contribute to increase the relaxation time.

[^0]As an example, let us consider a detonation with an X -ray yield of 10^{20} ergs radiating like a blackbody with a temperature of $10^{7}{ }^{\circ} \mathrm{K}$ occurring at an altitude somewhat below 50 km where the air density is 10^{-3} times less than at sea level. A crude estimate, using the asymptotic theory of Section 4.4 , (4) shows that about 10% of the X-ray energy is deposited at distances more than about 80 m where it produces temperatures less than $12,000^{\circ} \mathrm{K}$. In Fig. 6.1 (4) one reads off that the relaxation time at that temperature and a density $\frac{\rho}{\rho_{0}}=10^{-3}$ is $10^{-6} \mathrm{sec}$. Within that sphere it takes less time and on the outside more time to relax the air to its equilibrium temperature. Thus 10% of the energy relaxes at a relatively slow rate and the assumption that one can ignore the relaxation period is not entirely justified in that case.

The assumption of LTE is essential to the classical formulation of hydrodynamics. It means that the temperature is a well defined property of the fluid and that pressure and Internal energy are known functions of density and temperature. Without LTE it would be much more difficult to formulate the conservation theorems for momentum and energy.

In the theory of radiative transfer (Ghapter 2, (2)*, which together with hydrodynamics accounts for the expansion of fireballs, LTE also is an assumption of major importance. Without it a quantitative prediction of the interaction between matter and radiation would be a hopelessly complicated problem.

Despite the very important role played by radiative transport radiation does not as a rule account for a significant fraction of the energy density and the pressure within a fireball. Even for blackbody radiation,

DASA 1917-2, from now on referred to as (2).
which is not present unless the gas is opaque, this contribution is small unless the temperature exceeds values like 25 eV . Temperatures of that magnitude are only maintained during the very early stages of fireball histories. In this period the fireball cools down by radiative expansion and this goes so fast that there is essentially no hydrodynamical motion. In formulating the hydrodynamic equations one can therefore ignore the energy density and pressure of radiation because by the time they get into the act they are indeed negligible.

During the early period of fireball expansion (where radiative transfer of energy is 1mportant) the shape generally appears to be almost spherical, at least at low altitudes where the size is small compared to the scale height of the atmosphere. Asymmetries which are hidden by the opaque outer layers may possibly occur due to instabilities at the bomb air interface, but we shall ignore these. Not much is known about such phenomena in any case and adding the complication of asymmetry would compromise the already complicated problem of treating radiation flow. In line with the current state-of-the-art we shall therefore discuss only spherically symmetrical problems.

1.2 Basic equations of radiation hydrodynamics

The differential equations for calculating fireball histories are the conservation relations of ordinary hydrodynamics but with a rather complicated heating term in the energy equation. They can be written in either Eulerian or Lagrangian form. The two forms are characterized by a different choice of independent space variables. In the Eulerian system these are the coordinates in real space and in the

Lagrangian one they are coordinates which are tied to the particles of the fluid. In the Lagrangian system the coordinates in real space which describe the position of a specified particle are used as dependent variables. In the Eulerian system this is manifestly impossible and the motion is described in terms of the fluid velocity.

The other dependent variables which characterize the thermodynamic state of the fluid are the same in the two systems and can be chosen from a set which includes the density 0 or its reciprocal the specific volume V, the pressure p, the temperature T, the internal energy E, etc. It may be convenient to keep several of these variables in the equations but one must keep in mind that they are interrelated and that the thermodynamic state is specifled by any two of them.

The Lagrangian method is especially useful in problems with a high degree of symmetry where one needs only one coordinate to specify the position. Having restricted ourselves to spherically symmetrical problems we shall therefore adopt the Lagrangian approach.

We define the Lagrangian radius r of a given particle as its radius at time zero, i.e. before it has started to move. The actual radius of the particle at any time is denoted by the capital letter R. The hydrodynamic problem is to find $R(r, t)$.

If ρ_{0} stands for the initial density the specific volume at any Instant is

$$
\begin{equation*}
V=\frac{1}{\rho_{0}}\left(\frac{R}{r}\right)^{2} \frac{\partial R}{\partial r} \quad \text { (conservation of mass) } \tag{1.2-1}
\end{equation*}
$$

Introducing the velocity

$$
\begin{equation*}
u=\frac{\partial R}{\partial t} \tag{1.2-2}
\end{equation*}
$$

the other conservation equations are

$$
\begin{align*}
& \frac{\partial u}{\partial t}=-\frac{1}{\rho_{o}}\left(\frac{R}{r}\right)^{2} \frac{\partial p}{\partial r} \quad \text { (conservation of momentum) } \tag{1.2-3}\\
& \frac{\partial E}{\partial t}+p \frac{\partial V}{\partial t}=V \dot{Q} \quad \text { (conservation of energy) } \tag{1.2-4}
\end{align*}
$$

where the rate of heating per unit volume \dot{Q} still needs to be worked out.
As it stands the energy equation has a serious defect because it does not allow for the entropy raise produced by a shock. To get around this we adopt the method of Von Neumann and Richtmyer (1950) and add a pseudoviscous pressure

$$
q=\left\{\begin{array}{cc}
\left(l^{2} / v\right)(\partial u / \partial r) & \text { if } \frac{\partial u}{\partial r}<0 \tag{1.2-5}\\
0 & \text { if } \frac{\partial u}{\partial r}>0
\end{array}\right.
$$

to the regular pressure in Eqs. (1.2-3) and (1.2-4). The constant ℓ has the dimensions of a length; it will be further specified when we go to finite difference equations.

The radiative heating rate \dot{Q} at some point is the difference between absorbed and emitted power per unit volume

$$
\begin{equation*}
Q=\iint \mu_{\nu}^{\prime}\left(I_{\nu}-B_{\nu}\right) d \nu d \Omega \tag{1.2-6}
\end{equation*}
$$

The emitted power presents no problem because the blackbody intensity B_{ν} is a known function of temperature. There is no angular dependence and the integral over frequency can be expressed in terms of the Planck mean, Eq. (2.4-15), (2). One obtains:

$$
\begin{equation*}
\dot{Q}_{e m}=4 \bar{\mu}_{\mathrm{p}} \sigma \mathrm{~T}^{4} \tag{1.2-7}
\end{equation*}
$$

where σ is the Stefan Boltzmann constant.
The absorbed power is much more difficult to evaluate because the calculation of the intensity I_{ν}. is a major task. To carry this out one should in principle solve the equation of transfer (Eq. (1.3-1)) dlong every ray passing through the point in question and for all values of the frequency. One of the major difficulties of such a program arises from the fact that the optical properties of air in a large part of the relevant temperature range result mainly from transitions between molecular levels. The spectrum assoctated with the major band systems consists of an enormous number of lines and the absorption coefficient fluctuates from large values at the line centers to small ones between the lines. Because of these "windows" the radiation at some point generally comes from points along the ray which are an appreciable distance further back. This distance varies just as strongly with frequency as $\mu_{\nu}{ }^{\prime}$ itself and it is therefore not proper to use local averages of $\mu_{\nu}{ }^{\prime}$ in a frequency interval containing, say, a few lines. Instead, it is in princlple necessary to integrate the transport equation at a large enough number of frequencies within every one of these intervals. This correct approach clearly demands an impossible amount of computational
effort which has to be avolded. There are two limiting situations where this can be readily done. The one situation arises for a transparent medium where the optical depth $\mu_{\nu}{ }^{\prime} L$ (L being the size of the radiating region) is uniformly small compared to unity. In that case I_{ν} is very much smaller than B_{ν} and one can neglect the absorption altogether. In that case we have $\dot{Q}=-Q_{\mathrm{em}}$ which we know from Eq. (1.2-7).

In the opposite extreme of an opaque region for which μ_{ν} ' $L \gg 1$ one can simplify Eq. (1.2-6) directly. The heating rate can in that case be expressed in the form*

$$
\begin{equation*}
\hat{Q}=-\vec{\nabla} \cdot \vec{F} \tag{1.2-8}
\end{equation*}
$$

The flux vector is given by Eq. (2.5-8), (2) which we rewrite in the form

$$
\begin{equation*}
\vec{F}=-\frac{4}{3} \lambda_{R} \sigma \vec{\nabla} \mathrm{~T}^{4} \tag{1.2-9}
\end{equation*}
$$

Tables and graphs of the Rosseland mean free path λ_{R} or the related opacity can be found in (3) **, p. 12, pp. 446 to 449 and pp. 622 to 625.

The above method of treating radiative transfer was originally developed by Eddington nearly half a century ago. In its application it was however, limited to astrophysical problems where it was not coupled to hydrodynamics. An early discussion of the use of this so-called diffusion approximation to radiation hydrodynamics has been glven by Magee and Hirschfelder (1953). The first calculations carried out with this method to appear in the open literature were presented by Marshak (1958).

[^1]
1.3 Average absorption coefficients

In the temperature range where molecular transitions occur and where optical depths are neither uniformly small nor uniformly large one has to resort to approximation schemes. It is clearly necessary to apply some kind of frequency averaging which will do a fair amount of violence to the "correct approach" of solving the transfer equation for a few million values of the frequency. The basic mathematical problem is that one wants to average the product $\mu_{\nu}{ }^{\prime} I_{\nu}$ which enters in Eq. (1.2-6) as well as in the transport equation *

$$
\begin{equation*}
\frac{d I_{\nu}}{d s}=\mu_{\nu}^{\prime}\left(B_{\nu}-I_{\nu}\right) \tag{1.3-1}
\end{equation*}
$$

by equating the average of the product and the product of the averages, i.e. one wants to replace $\overline{\mu_{v} I_{v}}$ by $\overline{\mu_{\nu}^{\prime}} \overline{I_{v}}$ and that is of course not correct. The quality of this approximation depends on the amount of fluctuation among the values of $\mu_{\nu}{ }^{\prime}$ and I_{ν} that are being averaged and in a line spectrum this fluctuation may be quite severe. A number of averaging schemes have been proposed and are used in various computing programs.

One scheme divides the spectrum into groups (10 to 100) whose widths are chosen fairly narrow at the low energy end and wider as the energy goes up. Within each interval a Rosseland type average is obtained. Such group averages have been used, for example, in the SPUTTER program of AWFL as reported in RTD-TDR-63-3128 Vol. II and in a code developed by J. Zinn of LASL.

Strictly speaking, the left hand side of this equation should contain the additional term $\frac{1}{c} \frac{\partial I_{V}}{\partial t}$ but because of the large value of the light velocity this time dependence is usually left out. We note further that light rays are straight lines in Eulerian space and in this section we temporarily abandon the Lagrangian system.

A second method of averaging uses the average transmission function (Eq. (2.6-12b), (2)

$$
\begin{equation*}
\overline{\operatorname{Tr}\left(\mu_{\nu}^{\prime} s\right)}=\frac{1}{\Delta \nu_{1}} \int_{\Delta \nu_{i}} e^{-\mu^{\prime} \nu^{s}} d \nu \tag{1.3-2}
\end{equation*}
$$

and the slab absorption coefficient related to it by Eq. (2.6-19), (2)

$$
\begin{equation*}
\overline{\mu_{\nu}}(s)=-\frac{1}{s} \ln \overline{\operatorname{Tr}\left(\mu_{\nu} ' s\right)} \tag{1.3-3}
\end{equation*}
$$

These averages are defined for slabs of thickness s in which the temperature and density of the air are uniform. The intervals $\Delta \nu_{1}$ are much narrower than the groups of the first mentioned method. The spacing between intervals is 10 to 20 times as large as the interval size. The calculated averages depend smoothly on the frequency so that it seems reasonable to interpolate. The slab average is made to order for use in finite difference equations where the fluid is divided into zones. It has been used in a number of LMSC codes which will be discussed later in this chapter.

A variation of the group average procedure consists of subdividing the frequencies within a group into subgroups which are ordered according to the magnitude of the absorption coefficient rather than by frequency. The spread between the absorption coefficients within each subgroup is obviously less than between those in the entire group and subgroup averages
will therefore be more meaningful. To use subgroup averages we must also introduce individual intensities for each subgroup. Even the use of only two subgroups would improve the accuracy considerably. A short-cut for the calculation of two subgroup absorption coefficients consists of fitting the average transmission function in the form (Eq. (2.6-46). (2).

$$
\begin{equation*}
\overline{\operatorname{Tr}\left(\mu_{\nu}^{\prime} s\right)}=\frac{1}{2}\left(e^{-\mu_{1}^{\prime} s}+e^{-\mu_{2}^{\prime} s}\right) \tag{1.3-4}
\end{equation*}
$$

Tables of μ_{1}^{\prime} and μ_{2}^{\prime} are given by Churchill et al. (1963). We don't know of any code which has utilized this type of average.
1.4 Solution of the equation of transfer

Having obtained an average absorption coefficient which permits us to replace the average product $\overline{\mu_{\nu} I_{\nu}}$ by the product of averages $\overline{\mu_{\nu}} \overline{I_{\nu}}$ the transfer equation becomes*

$$
\begin{equation*}
\frac{\mathrm{dI}}{\nu} \mathrm{ds}=\bar{\mu}_{\nu}\left(\bar{B}_{\nu}-\bar{I}_{\nu}\right) \tag{1.4-1}
\end{equation*}
$$

The formal integration of this equation along a ray is straightforward and leads to

$$
\begin{equation*}
\overline{I_{\nu}}(s)=e^{-\tau} \nu \bar{I}_{\nu}\left(s_{0}\right)+\int_{0}^{\tau} \bar{B}_{\nu}\left(s^{\prime}\right) e^{\left(\tau \nu^{\prime}-\tau_{\nu}\right)} d \tau_{\nu}^{\prime} \tag{1.4-2}
\end{equation*}
$$

[^2]\[

$$
\begin{equation*}
\tau_{\nu}=\tau_{\nu}(s)=\int_{s_{0}}^{s} \bar{\mu}_{\nu}\left(s_{1}\right) d s_{1} ; \tau_{\nu}^{\prime}=\tau_{\nu}\left(s^{\prime}\right) \tag{1.4-3}
\end{equation*}
$$

\]

The difficulty arises because one has to determine the value of this integral for all the rays through a given point to evaluate the rate of absorption of radiative energy at that point. This is required for carrying out the angular integration in Eq. (1.2-6).

There are basically two approaches to this problem. One is the brute force approach to follow this program directly and to evaluate $I_{V}(s)$ along a large number of rays. This approach has been used in the SPUTTER program with one tangential ray through the center of each zone. Fig. l-l shows how these rays are combined to obtain the various values of $\overline{\mathrm{I}}_{v}$ at the center of zone 4. Of the 7 rays which are drawn 3 are redundant because of symmetry, and one obtains 3 different values of $\overline{\mathrm{I}}_{\nu}$ going out, 3 going in and 1 grazing the zone.

In the other approach one defines certain moments, i.e. angular integrals of $\overline{\mathrm{I}}_{\nu}$ which now depend only on the radius and not on the direction. To solve for these moments one integrates a system of coupled linear differential equations which are only approximately correct but which give exactly the right answer when one considers the limit where the diffusion approximation applies. Such schemes have been used widely in astrophysics and are discussed in great detall by Chandrasekhar (1960) and Mustel (1958). Some of the more sophisticated schemes use a large number of moments but quite good results can be obtained by restricting that number to two and using only the outgoing and ingoing flux which
are defined as the integrals

$$
\begin{gathered}
F_{\nu(-)}=\int \bar{I}_{\nu} \cos \theta d \Omega \\
\cos \theta>0 \\
(\cos \theta<0)
\end{gathered}
$$

where θ is the angle between the ray and the radial direction.
We consider first the case of plane geometry where the medium is stratified in plane parallel layers. This geometry has been studied extensively by astrophysicists and applied to the radiative equilibrium In the outer regions of stars where it is indeed unnecessary to worry about the curvature. By treating the radial coordinate R as if it were a cartestan coordinate the angle θ of a ray remains constant along the ray path. The optical path length between two surfaces is therefore simply the optical path length along the normal divided by $|\cos \theta|$. We shall express this in terms of the optical depth conventionally defined by astrophysicists as the optical path length measured radially Inward from the surface of a star (or in our case a fireball), i.e. the integral

$$
\begin{equation*}
\tilde{\tau}_{\nu}(R)=\int_{R}^{R_{s}} \bar{\mu}_{\nu}\left(R^{\prime}\right) d R^{\prime} \tag{1.4-5}
\end{equation*}
$$

To evaluate $I_{\nu}(s)$ as given by Eq. (1.4-2) for an outgoing ray we place so far enough inside that the factor $e^{-\tau} \nu$ is essentially zero; for an ingoing ray we start at the surface where $\bar{I}_{\nu}\left(s_{o}\right)=0$. The first term of

Eq. (1.4-2) can therefore be left out in both cases. For the exponent under the integral one can write

$$
\begin{equation*}
\tau_{\nu}^{\prime}-\tau_{\nu}=-\left|\frac{\tilde{\tau}_{\nu}{ }^{\prime}-\tilde{\tau}_{v}}{\cos \theta}\right| \tag{1.4-6}
\end{equation*}
$$

and for outgoing and ingoing rays one obtains

$$
\begin{align*}
& \bar{I}_{\nu}=\frac{1}{|\cos \theta|} \int_{0}^{r} \bar{B}_{\nu}\left(R^{\prime}\right) \bar{\mu}_{\nu}\left(R^{\prime}\right) e^{-\left|\frac{\widetilde{\tau}_{\nu}{ }^{\prime}-\widetilde{\tau}_{\nu}}{\cos \theta}\right|_{d R^{\prime}} ; \cos \theta>0 \quad(1.4-7 a)} \\
& \bar{I}_{\nu}=\frac{1}{|\cos \theta|} \int_{r}^{r_{s}} \bar{B}_{\nu}\left(R^{\prime}\right) \bar{\mu}_{\nu}\left(R^{\prime}\right) e^{-\left|\frac{\tilde{\tau}_{\nu}^{\prime}-\widetilde{\tau}_{\nu}}{\cos \theta}\right|} d_{d R^{\prime} ; \cos \theta<0 \quad(1.4-7 b)} \tag{1.4-7b}
\end{align*}
$$

Entering these expressions into Eq. (1.4-4) one obtains the outgoing and the ingoing flux

$$
\begin{align*}
& F_{\nu+}=2 \pi \int_{0}^{r} \bar{B}_{\nu}\left(R^{\prime}\right) \bar{\mu}_{\nu}\left(R^{\prime}\right) E_{2}\left(\left|\widetilde{\tau}_{\nu}^{\prime}-\tilde{\tau}_{\nu}\right|\right) d R^{\prime} \tag{1.4-8a}\\
& F_{v-}=2 \pi \int_{r}^{r} \bar{B}_{\nu}\left(R^{\prime}\right) \bar{\mu}_{\nu}\left(R^{\prime}\right) E_{2}\left(\left|\tilde{\tau}_{\nu}^{\prime}-\tilde{\tau}_{\nu}\right|\right) d R^{\prime} \tag{1.4-8b}
\end{align*}
$$

where

$$
\begin{equation*}
E_{2}(\tau)=\int_{1}^{\infty} e^{-u \tau} u^{-2} d u \tag{1.4-9}
\end{equation*}
$$

A useful approximation is obtained if one replaces $|\cos \theta|$ in Eq. (1.4-7) by an average $c=\overline{\cos \theta}$. Substituting the approximate form of $I_{\nu} \pm$ into Eq. (1.4-4) gives expressions similar to those in Eqs. (1.4-8) but the exponential integral is now replaced by a simple exponential function, i.e. we have the approximation

$$
\begin{equation*}
E_{2}(\tau) \approx \frac{1}{2 c} e^{-\tau / c} \tag{1.4-10}
\end{equation*}
$$

The average intensities calculated from the approximate fluxes

$$
\begin{equation*}
\overline{\mathrm{I}}_{\nu \pm}=F_{v \pm} / \pi \tag{1.4-11}
\end{equation*}
$$

satisfy the differential equations

$$
\begin{equation*}
c \frac{d \bar{I}_{\nu \pm}}{d \mathrm{R}}= \pm \bar{\mu}_{\nu}\left(\bar{B}_{\nu}-\overline{\mathrm{I}}_{\nu \pm}\right) \tag{1.4-12}
\end{equation*}
$$

These average intensities are therefore identical with the intensities in the directions for which $|\cos \theta|=c$. The idea of the two stream model with intensities in a characteristic direction goes back to Schwarzschild and Schuster who suggested to use $c=\frac{1}{2}$. A much better choice is $c=\frac{2}{3}$ which gives the correct net flux

$$
\begin{equation*}
F_{\nu+}-F_{\nu-}=-\frac{4 \pi}{3 \bar{\Gamma}_{\nu}} \frac{d \bar{B}{ }_{\nu}}{d R} \tag{1.4-13}
\end{equation*}
$$

in the high opacity limit.

In spherical geometry one has no simple rigorous expressions for I_{v} like those given in Eqs. (1.4-7) from which to derive two stream equations. It seems, nevertheless, reasonable that one should be able to use equations which are essentially of the same character but with minor modifications to maintain conservation of energy. It is easy to see that this is achleved by the pair of equations

$$
\begin{equation*}
\frac{2}{3} \frac{d}{d R}\left(R^{2} \bar{I}_{\nu \pm}\right)= \pm R^{2} \bar{\mu}_{\nu}\left(\bar{B}_{\nu}-\bar{I}_{\nu \pm}\right) \tag{1.4-14}
\end{equation*}
$$

With the definition given in Eq. (1.4-11) one obtains the outgoing and incoming flux simply by multiplying the corresponding intensities $\overline{\mathrm{I}}_{\nu \pm}$ by a factor π. From the total integrated net flux

$$
\begin{equation*}
\mathcal{F}=\int\left(F_{\nu^{+}}-F_{\nu_{-}}\right) d \nu \tag{1.4-15}
\end{equation*}
$$

one can finally obtain the heating rate

$$
\begin{equation*}
\dot{Q}=-\frac{1}{R^{2}} \frac{\mathrm{~d}}{\mathrm{dR}}\left(\mathrm{R}^{2} \mathcal{F}\right) \tag{1.4-16}
\end{equation*}
$$

for use in the energy equation.

1.5 Finite difference equations

It is obviously impossible to find exact analytical solutions to the equations of RH and one must be satisfied with approximate numerical solutions. To obtain these one replaces infinitesimal increments of dependent as well as independent variables by finite differences. Mathematically RH
can be characterized as an initial value problem and the methods and problems arising in treating this by means of finite difference equations have been thoroughly discussed by Richtmyer (1957). We shall review some general considerations and then turn to questions which are specifically relevant to our problem.

In a finite difference scheme continuous variables are replaced by discrete ones but there are numerous possibilities for doing this. Thus one can regard the discrete values of a variable as representing either the values of the corresponding continuous variable at a set of discrete meshpoint or the average values between meshpoints. There are other variations but they are not needed in the following discussion. One can treat some variables in the first and others in the second manner. To indicate the actual choice one can use integral subscripts for variables defined at the meshpoints and half integral ones for those defined in the intervals. It is convenient and natural to let R_{i} and U_{i} represent the radus and the velocity of the particle at the meshpoint 1 and this leads almost automatically to defining $V_{i+1 / 2}, P_{i+1 / 2}, E_{i+1 / 2}$, and $T_{1+1 / 2}$ as the averages of specific volume, pressure, internal energy density and temperature in the interval between the meshpoints 1 and $1+1$.

Another element of choice enters in the methods used for advancing variables in time. Almost all variables are defined at meshpoints in time which are indicated by integral superscripts. It may, however, be useful to define the velocity between meshpoints which can be indicated by half integral superscripts. With this definition and abbreviating the right hand side of Eq. (1.2-3) by a (for acceleration) that equation and Eq. (1.2-2)
lead to the integration procedure

$$
\begin{align*}
& U^{n+1 / 2}=U^{n-1 / 2}+a^{n} \delta t \tag{1.5-1}\\
& R^{n+1}=R^{n}+U^{n+1 / 2} \delta t \tag{1.5-2}
\end{align*}
$$

Having obtained $\mathrm{R}^{\mathrm{nfl}}$ one can then obtain $\mathrm{V}^{\mathrm{n}+1}$ by differencing which follows from Eq. (1.2-1). So far we have not bothered to look at alternate schemes because the procedures outlined above are very straightforward and there seems to be no good reason for doing anything more elaborate. In the purely hydrodynamic case, i.e. if $\dot{Q}=0$ the energy equation ($1.2-4$) can also be integrated very simply. Centering the difference equation at ($n+1 / 2$) leads to

$$
\begin{equation*}
E^{n+1}-E^{n}+\frac{1}{2}\left(p^{n+1}+p^{n}+2 q^{n+1 / 2}\right)\left(V^{n+1}-v^{n}\right)=0 \tag{1.5-3}
\end{equation*}
$$

If E is expressed as a function of V and p this equation can be solved for $\mathrm{p}^{\mathrm{n+1}}$, the one variable which is still unknown. Anticipating the problems which arise when one has radiative heating it is really more useful to express both E and p as functions of V and T and to solve Eq. (1.5-3) for T^{n+1}. Either way one has to solve for only one unknown at a time which causes no real difficulty even though it may have to be done by iteration.

This situation changes drastically when the radiative heating rate \dot{Q} becomes important. The heating term to be added on the right hand side of Eq. (1.5-3) should be centered at the level $t^{n+1 / 2}$ like the remaining
part of the equation but the temperature distribution from which it must be calculated is only known up to the time t^{n}. There are two major avenues of attack. One is to forget about centering \dot{Q} and use its value as calculated at t^{n}. If this is done one can still solve explicitly for T^{n+1} and this is as the explicit method of integration.

In the other attack one uses the properly centered heating rate $\frac{1}{2}\left(\dot{Q}^{n+1}+\dot{Q}^{n}\right)$. This means that the equation which describes the heating In any one zone depends on the values of $\mathrm{T}^{\mathrm{ntl}}$ in all zones so that one has to solve a large number of equations (one per zone) simultaneously. This implicit method involves a considerable amount of algebraic labor. If centering was only required for accuracy it would not be worthwhile to go to all this trouble because one could increase the accuracy more easily by reducing δt. What is really involved is the question of mathematical stability which we shall briefly discuss.

It is physically clear that a fluid responds to any pressure or temperature disturbance by a motion or heat flow which counteracts the disturbance. In an integration by means of difference equations which uses too large time intervals it may happen that the disturbance is overcompensated so that an excess turnsin one step into a deficit, in the next step again into an excess etc. If the magnitude of this alternating disturbance increases each time any small disturbance will eventually cause the solution to blow up. In principle one can cure such an instability by taking δt small enough but this could seriously increase the running time of a problem.

There are two cases where the stability condition has been obtained analytically. The first arises when the dominant mode of energy transfer is of a hydrodynamic nature. The maximum δt in this case is found as
follows. One calculates for each zone the traversal time $\Delta t_{1+1 / 2}=$ $\left(R_{1+1}-R_{1}\right) / V_{S(1+1 / 2)}$ of a signal traveling with the local sound speed. Going through all intervals one then finds the smallest, say $\Delta t_{\text {min }}$. The time increment is then limited by the so-called Courant-condition

$$
\begin{equation*}
\delta t<k \Delta t_{\min } \tag{1.5-4}
\end{equation*}
$$

where k is a numerical factor near unity which depends on the integration scheme. In the scheme where one uses the three equations at the beginning of this section one has $k=1$.

When radiative heating dominates, the stability analysis has been carrled out for the case where one can use the diffusion approximation. In the explicit scheme the limit for δt is proportional to $\bar{\mu}_{R} \delta R^{2}$ which decreases together with the Rosseland mean absorption coefficient of the air. If the air is falrly transparent δt is limited to very small values and this makes an explicit calculation very costly in computer time. The implicit method does not have this trouble and is in fact unconditionally stable. On the other hand it is of course also time consuming to solve a large number of coupled equations simultaneously. One can attempt to approach the implicit solution by iteration. On the first go-around one can advance T by the explicit method. With the advanced temperature distribution one can then work out \dot{Q}^{n+1}, form the average $\dot{Q}^{n+1 / 2}=$ $\frac{1}{2}\left(\dot{Q}^{n}+\dot{Q}^{n+1}\right)$ and reevaluate T^{n+1}. This procedure can be repeated several times and if it converges it will lead to a stable solution. The time step δt is now limited by the condition that the solution should converge. In contrast to the stabllity condition of the explicit method this limit of $\delta \mathrm{t}$
is inversely proportional to $\bar{\mu}_{R}$ and independent of the zone size. The actual convergence criterion is almost equivalent with imposing a limit on the fractional energy change per time step within every zone. That form of the condition is easy to use and experience has shown that a fraction like one percent ensures the convergence. In a purely implicit procedure there is no such limitation on the magnitude of the time step. For the sake of accuracy one should also impose a limit on the fractional energy change per time step but it does not need to be as small. This limit can be allowed to vary from zone to zone to require greater accuracy in those zones where the changes make a significant contribution to the overall picture.

It is obvious that the allowed time interval changes throughout the calculation. For reasons of economy one should always run fairly close to the maximum without, however increasing δt too abruptly. To change δt generally requires some interpolation (or extrapolation) and all programs nowadays have provisions for carrying the necessary changes out automatically. Although the preceding arguments were based on the diffusion approximation they apply equally in the more general case. It is true that one can not readily obtain analytic stability or convergence criteria but experience with numerical calculations indicates the same pattern.

In addition to the various decisions described above one also has to make a choice on zone sizes. There are two parts to this decision relating to the total number of zones and to their relative sizes at different radil. Part one involves a compromise between conflicting requirements for accuracy and economy because it takes a large amount of computer time to use very many zones. This is amplified if the choice of δR also limits the time step as in hydrodynamic calculations where $\delta t \sim \delta R$ and even more in the explicit
calculation of radiative transfer where $\delta t \sim \delta R^{2}$.
Part two involves a judg ment as to where the really significant changes are taking place and it is of course at those regions where one should use the finest zoning. In the course of a calculation the location of significant changes moves so that one has to make provisions in the program to detect this and to react to it by rezoning. Furthermore the overall radius of the fireball changes during an average calculation by as much as 3 orders of magnitude so that rezoning is also necessary to keep the number of zones at a more or less constant level.

The pseudo viscous pressure q introduced in Eq. (1.2-5) is a device for calculating the entropy rise behind the shock. Without the damping mechanism provided by q the changes induced behind the shock overshoot and produce lasting oscillations which physically do not belong there. A large value of ℓ will kill these improper oscillations most effectively but at the cost of making the transition region very wide which is also Incorrect. Experience has shown that $\ell=2 \Delta \mathrm{R}$ will stop the fake oscillations reasonably fast without spreading the shock transition over more than about 4 zones.

One can also express q in terms of $\frac{\partial v}{\partial t}$ rather than $\frac{\partial u}{\partial r}$ and Richtmyer suggests to use the formula

$$
\begin{equation*}
q=\frac{\left(p_{O} \ell\right)^{2}}{V}\left(\frac{\partial V}{\partial t}\right)^{2}, \frac{\partial V}{\partial t}<0 \tag{1.5-5}
\end{equation*}
$$

with

$$
\begin{equation*}
\ell=a\left(\frac{r}{R}\right)^{2} \Delta r \tag{1.5-6}
\end{equation*}
$$

so that the transition region covers the same number of zones near the center and further away from it. The numerical factor a should again be approximately 2 .

In differencing either Eq. (1.2-5) or (1.5-5) one is led to expressions at half integral times. To obtain the acceleration in Eq. (1.5-1) it should be known at t^{n} but to achieve that, one would have to use an implicit routine. In this case that is not worthwhile since the use of q is an artifice anyway and it is customary to have q lag half a time step behind. In the energy equation (1.5-3) q is automatically in step.

The total energy which is obtalned by summing the kinetic and internal energy within the fireball and the energy carried away by radiation should always stay at a constant level. The internal energy should in principle contain a part due to radiation but as mentioned in section 1.1 this does not amount to much. A trivial point, but one which must nevertheless be kept in mind 1s, that one should only count the excess over the energy in the ambient unheated air; otherwise the nominal energy would grow with the volume of the fireball.

It is important to keep track of any violations of energy conservation which may creep in through the use of finlte difference schemes. Any program should therefore contalns a routine for checking energy conservation.

The point at which R.H. goes beyond standard methods comes with the calculation of radiative transfer. The various methods require the evaluation of certain space integrals before one can calculate the energy deposition in a specified zone. Because of the very strong temperature dependence of the integrands these integrals depend critically on the radial dependence of the temperature. The common method of approximating
this dependence by assuming constant values of the temperature within the zones may lead to serious errors. An attempt to correct these has been made by Hillendahl (1964).

We shall present the analysis for the plane case which is formally easier. The transition to spherical geometry can be made later and requires only minor changes which are rather obvious. The starting point is Eq. (1.4-12) but before one has carried out any frequency averaging. Thus the line character is still preserved and μ_{ν} and $I_{\nu \pm}$ are rapidly changing functions of frequency. Integrating Eq. (1.4-12) across the zones which are separated by the interface at R_{1} one finds for the outgoing and ingoing stream (represented by the upper and lower sign

$$
\begin{equation*}
I_{\nu \pm, 1}=I_{\nu \pm, 1 \mp 1} e^{-\frac{3}{2} \Delta_{\nu, 1 \mp} \frac{1}{2}} \pm \frac{3}{2} \int_{\widetilde{\tau}_{v, 1}}^{\tilde{\tau}_{\nu, 1 \mp 1}^{B_{v}^{\prime}} e^{-\frac{3}{2} \Delta_{\nu, i}^{\prime}} d \widetilde{\tau}_{\nu}^{\prime}} \tag{1.5-7}
\end{equation*}
$$

where B_{V}^{\prime} and $\tilde{\tau}_{\nu}^{\prime}$ are taken at the same point R^{\prime}, and

$$
\begin{equation*}
\Delta_{v, 1}^{\prime}=\left|\tilde{\tau}_{v, 1}-\tilde{\tau}_{\nu}^{\prime}\right| ; \Delta_{v, 1+1 / 2}=\left|\tilde{\tau}_{v, 1}-\tilde{\tau}_{v, 1+1}\right| \tag{1.5-8}
\end{equation*}
$$

To carry out the integral we use the first two terms of the power expansion

$$
\begin{equation*}
B_{v}^{\prime}=B_{v, 1}+\left(\frac{d B_{v}}{d \tilde{\tau}_{v}}\right)\left(\tilde{\tau}_{v}^{\prime}-\tilde{\tau}_{v, 1}\right)+\ldots \tag{1.5-9}
\end{equation*}
$$

and obtain

$$
\begin{align*}
I_{\nu \pm, 1}= & I_{\nu \pm, 1 \mp 1} e^{-\frac{3}{2} \Delta_{\nu, 1 \mp 1 / 2}}+B_{\nu, 1}\left(1-e^{-\frac{3}{2} \Delta_{\nu, 1 \mp} 1 / 2}\right) \\
& \pm \frac{2}{3}\left(\frac{d B_{\nu}}{\tilde{d}_{\nu}}\right)\left[1-\left(1+\frac{3}{2} \Delta_{\nu, 1 \mp}\right)[1 / 2) e^{-\frac{3}{2} \Delta_{\nu, 1 \mp} 1 / 2}\right] \tag{1.5-10}
\end{align*}
$$

Integrating over frequency we obtain formally

$$
\begin{equation*}
I_{ \pm, 1}=I_{ \pm, 1 \mp 1} \quad Z_{ \pm, 1}+\left(B_{1} 1-A_{ \pm, 1}\right) \pm \frac{2}{3}\left(\frac{\mathrm{~dB}}{\mathrm{~d} \tilde{\tau}}\right)_{1} W_{ \pm, 1} \tag{1.5-11}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{ \pm, 1}=\int I_{\nu \pm, 1} d \nu \tag{1.5-12}\\
& Z_{ \pm, 1}=\int \frac{I_{\nu \pm, 1}}{I_{ \pm, 1}} e^{-\frac{3}{2} \Delta, 1 \bar{\mp} 1 / 2} d \nu \tag{1.5-13}\\
& A_{ \pm, 1}=\int \frac{B_{\nu, 1}}{B_{1}} e^{-\frac{3}{2} \Delta_{\nu, 1 \bar{\Psi}} 1 / 2} d \nu \tag{1.5-14}\\
& W_{ \pm, 1}=\int \frac{\left(\frac{d B}{d \widetilde{T}}\right)}{\left(\frac{d B}{d T}\right)}\left[1-\left(1+\frac{3}{2} \Delta_{\nu, 1 \overline{+}}[1 / 2) e^{-\frac{3}{2} \Delta_{\nu, 1 \overline{+}}}\left[\begin{array}{l}
\end{array}\right]\right.\right.
\end{align*}
$$

(1.5-15)
and where B_{i} is the integrated intensity

$$
\begin{equation*}
B=\int B_{\nu} d \nu=\frac{\sigma}{\pi} T^{4} \tag{1.5-16}
\end{equation*}
$$

at the point R_{i}. No limits of integration have so far been specified and one is free to divide the spectrum into any set of frequency intervals. As a first approximation Hillendahl used the entire spectrum without subdividing it.

Before Eq. (1.5-11) can become operational one has to define the average optical depth \tilde{T} which enters in the derivative $\frac{d B}{d \tilde{T}}$ and one has to face the difficulty of an unknown ratio I_{V} / I entering into the definition of Z.

The procedure devised by Hillendahl for obtaining an average for $\tilde{\tau}$ is specifically intended for use with finite zone sizes. The prescription is designed to keep the emissivity of a zone of constant density and temperature unchanged if one replaces the frequency dependent optical depth $\Delta \tilde{T}_{\nu}=\mu_{\nu} \Delta R$ by its average $\Delta \tilde{T}$. Thus, 1.e., by making this substitution in the exponent of Eq. (1.5-14) one is led to

$$
\begin{equation*}
A=\int \frac{B_{\nu}}{B} e^{-\frac{3}{2} \mu_{\nu} \Delta R} d \nu=e^{-\frac{3}{2} \Delta \tilde{T}} \tag{1.5-17}
\end{equation*}
$$

We note that the factor $\frac{B_{y, 1}}{B_{1}}$ in Eq. (1.5-14) is taken at the edge of the zone. Since this ratio varies only very slowly with T we will take it at the center of the zone instead, so that there is only one emissivity A per zone and not different ones for the ingoing and outgoing ray. In the above integral for A one can clearly replace the rapidly varying exponential by a smooth one in which one uses the slab absorption coefficient $\bar{\mu}_{\nu}$ as defined in Eqs. (1.3-2) and (1.3-3). In
the new expression

$$
\begin{equation*}
A=\int \frac{B_{v}}{B} e^{-\frac{3}{2} \bar{\mu}_{\nu} \Delta R} d \nu \tag{1.5-18}
\end{equation*}
$$

the zone with ΔR enters not only as a factor in the exponent but also as one of the variables in $\bar{\mu}_{\nu}=\bar{\mu}_{\nu}(0, T, \Delta R)$. Various methods for calculating $\bar{\mu}_{\nu}$, which apply when the dominant absorption is molecular, atomic or free-free, have been described in (2). The results are tabulated in and have been used in the above integral to obtain $A(\rho, T, \Delta R)$. It is convenient to express this in terms of a mean absorption coefficient $\bar{\mu}_{H}(0, T, \Delta R)=-\frac{2}{3} \ln A / \Delta R$ and to write:

$$
\begin{equation*}
A=e^{-\frac{3}{2}\left(\bar{u}_{H} \Delta R\right)} \tag{1.5-19}
\end{equation*}
$$

Depending on ΔR as well as on ρ and $T, \bar{\mu}_{H}$ differs from the Rosseland mean ($\bar{\mu}_{R}$) and the Planck mean ($\bar{\mu}_{P}$) which depend only on ρ and T.

For the function W, which should in principle be calculated from Eq. (1.5-15) we use an approximation and set

$$
\begin{equation*}
W=1-\left(1+\frac{3}{2} \bar{\mu}_{H} \Delta R\right) e^{-\frac{3}{2} \bar{\mu}_{H} \Delta R} \tag{1.5-20}
\end{equation*}
$$

which looks reasonable and leads to the correct energy deposition when $\bar{\mu}_{H} \Delta R \quad$ is large enough that one can use the diffusion approximation. As in the case of A we are using only one W per zone.

The coefficients $Z_{ \pm, 1}$ as defined by Eq. (1.5-13) depend on the unknown spectral distribution $I_{V \pm, 1} / I_{ \pm, 1}$ at the point 1 . Since the difference equations (1.5-11) apply only to the integrated Intensities $I_{ \pm, 1}$ their solution does not give us any direct information about the spectral distribution and we must rely on educated guesses for the latter. The basic clue which we follow is that the radiation at some point 1 comes by and large from a zone (the radiating zone) which lies an optical depth unity behind that point in the direction where the stream comes from. The distribution has therefore the distribution of a blackbody source at the temperature T_{R} of the radiating zone but modified by selective absorption in the intermediate zones.

When we apply this model we distinguish 3 typical situations for the ingoing and 3 for the outgoing stream. This comes from the peculiar temperature dependence of mean absorption coefficients. For all these means, whether we talk of $\bar{\mu}_{R}, \bar{\mu}_{P}$ or $\bar{\mu}_{H}$, one can distinguish a central temperature range where $\bar{\mu}$ is large and the low and high T ranges where it drops to very low values.

The temperature profile of a fireball is typically a monotonically decreasing curve. While the central temperature is still large this profile looks like the sketch in Fig. 1-2 with a central section where $\bar{\mu}$ is small so that radiative transfer maintains a nearly constant temperature. Beyond that plateau comes a more opaque region with a relatively large temperature gradient and at the point where the temperature has dropped to where the alr is agaln transparent the profile becomes again more level. Superimposed on this one finds usually
some structure due to shocks or other disturbances but this does not alter the main conclusion that there are 3 distinct regions.

In the opaque intermediate region the spectral distribution I_{V} / I can be identified with that of a blackbody at the local temperature so that one is led to $Z_{f}=Z_{-}=A$. In the interior region the radiation comes mainly from its boundary where it is in contact with the opaque region. Since the temperature profile is quite level one does not commit a significant error by identifying I_{V} / I again with the local B_{V} / B which varies much less with T than either B_{V} or B itself. As In the previous case we therefore use the approximation $Z_{+}=Z_{-}=A$.

Only in the outer section do we have to make a more careful choice of I_{V} / I and only for the outgoing stream. The ingoing stream carries essentially no energy and it doesn't matter much what one does. The simplest choice is again to set $Z_{-}=A$.

The point where it really counts that our model should adequately represent the true physical nature of radiative transport comes when we consider the outgoing stream as it emerges from the opaque region. The absorption to which this stream is subjected is largely due to molecules. In calculating which parts of the spectrum are and which are not transmitted one is greatly helped by the character of the energy dependence of $\bar{\mu}$, Fig. 1-3, which is a typical example taken from SACHA type calculations shows that $\bar{\mu}$ is a very rapidly rising function of frequency. From this graph we find by inspection that a zone of about 10 m thickness would transmit practically no photons above 5 eV and practically all photons below 3.8 eV . Approximately one can assume that there is a critical photon energy $h \nu_{c}$ in the
vicinity of 4.4 eV at which the transmitted flux is sharply cut off. For a stream which starts out as a blackbody spectrum $\frac{B_{v}}{B}=b_{v}\left(T_{R}\right)$ one finds that the transmitted fraction of the energy is a known integral

$$
\begin{equation*}
L\left(T_{R}, h \nu_{C}\right)=\int_{0}^{\nu_{C}} b_{\nu}\left(T_{R}\right) d \nu \tag{1.5-21}
\end{equation*}
$$

The procedure for determining $\quad Z_{+}$for any zone $1-1 / 2$ outside the opaque region starts out with finding the radiating zone which belongs to it and whose temperature has been designated as T_{R}. We assume that the model spectrum I_{v} starts out there as a blackbody spectrum $B_{V}\left(T_{R}\right)$. Any of the zones through which it passes will not transmit any radiation above its cut-off energy $h \nu_{c}$ and the model spectrum which finally enters into zone $1-1 / 2$ remains $I_{V}=B_{V}\left(T_{R}\right)$ up to the lowest cut-off energy $h \nu_{\min }$ encountered by the stream but is reduced to $I_{\nu}=0$ above $h \nu_{\min }$. If zone $1-1 / 2$ has a lower cut-off $h \nu_{c, 1-1 / 2}$ we set therefore

$$
\begin{equation*}
Z_{+, 1}=\frac{L\left(T_{R} h \nu_{c, 1-1 / 2}\right)}{L\left(T_{R} h \nu_{m i n}\right)} \tag{1.5-22}
\end{equation*}
$$

If the cut-off energy is equal to or larger than $h \nu_{\min }$ the model spectrum would lead to $Z_{+, 1}=1$ which can't be right and indicates that the sharp cut-off approximation is too crude to fit this case. An upper limit for Z can be obtained by setting it equal to the local A since the bulk of the true spectral distribution lies at somewhat higher energles than the local blackbody spectrum. Thus the true I_{v} will suffer somewhat more absorption than B_{v} which leads to the inequality

$Z<A$.

The modifications which are necessitated by going to spherical symmetry can be written down without difficulty. One only has to note that Eq. (1.4-14) differs from Eq. (1.4-12) by the factor R^{2} which multiplies both I and B . Clearly this factor must enter when one modifies the corresponding set of Eqs. (1.5-11). As we write down the modified set we incorporate the result that the coefficients A and W depend only on the zone and not on the direction of the stream, and obtaln:

$$
\begin{equation*}
R_{1}^{2} I_{ \pm, 1}=R_{1 \mp 1}^{2} Z_{ \pm, 1} I_{ \pm, 1 \mp 1}+R_{1}^{2} B_{1}\left(1-A_{1 \mp 1 / 2}\right) \pm \frac{2}{3} R_{1}^{2}\left(\frac{d B}{d \widetilde{\tau}}\right)_{1} W_{1 \mp 1 / 2} \tag{1.5-23}
\end{equation*}
$$

The A and W are as before given by Eqs. (1.5-19) and (1.5-20) and $Z_{ \pm, 1}$ is nearly always equal to $A_{1} \mp 1 / 2$ except in a few zones just outside the opaque region where one should use Eq. (1.5-22).

In the two stream model the fluxes differ from the intensities by a factor π as shown in Eq. (1.4-11). The relation carries over when one performs the frequency radiation so that

$$
\begin{equation*}
F_{ \pm, 1}=\pi I_{\underline{t}, 1} \tag{1.5-24}
\end{equation*}
$$

Having determined the intensities by solving the set of Eqs. (1.5-23) one is therefore ready to evaluate $-\nabla \cdot \vec{F}$ which according to Eq. (1.2-8) gives us the radiative heating rate. Thus one obtains:

$$
\begin{equation*}
\dot{Q}_{1+1 / 2}=\frac{3}{R_{1+1}{ }^{3}-R_{1}^{3}}\left[R_{1}^{2}\left(F_{+, 1}-F_{-, 1}\right)-R_{1+1}^{2}\left(F_{+, 1+1}-F_{-, 1+1}\right)\right] \tag{1.5-25}
\end{equation*}
$$

which is the final equation of the two stream method. Before leaving it let us take a somewhat closer look how this equation handles a zone in the opaque region. In any region where one replaces Z_{f} and Z_{-}by A one finds that Eq. (1.5-23) reduces to:

$$
\begin{equation*}
I_{ \pm, 1}=B_{1} \pm \frac{2}{3}\left(\frac{d B}{d \widetilde{\tau}}\right)_{1} \quad W_{1} \overline{1} / 2 \tag{1.5-26}
\end{equation*}
$$

from which one obtains in turn

$$
\begin{equation*}
F_{+, 1}-F_{-, 1}=\frac{2 \pi}{3}\left(\frac{d B}{d \widetilde{T}}\right)_{1}\left(W_{1-1 / 2}+W_{1+1 / 2}\right) \tag{1.5-27}
\end{equation*}
$$

In an opaque region this simplifies still further because the factor $e^{-\frac{3}{2} \bar{\mu}_{H} \Delta R}$ in Eq. (1.5-20) becomes negligible compared to unity. One can therefore set $W=1$ and obtain:

$$
\begin{equation*}
F_{+, 1}-F_{-, 1}=\frac{4 \pi}{3}\left(\frac{d B}{d \widetilde{T}}\right)_{1} \tag{1.5-28}
\end{equation*}
$$

and since $B=\frac{\sigma}{\pi} T^{4}$ this is clearly equivalent to Eq. (1.2-9) 1.e., to the basic equation of the diffusion approximation. This is of course no surprise because we picked $\overline{\cos \theta}=\frac{2}{3}$ precisely in order to achieve this equivalence.

In an opaque region, the diffusion approximations contains all the physics needed for the calculation of radiative energy transfer and It is superior to other methods as far as speed and possibly accuracy of calculation are concerned. Hillendahl's formulation of the two stream
method automatically leads to this procedure. More elaborate methods such as the multiple ray technique do not, but it is of course possible to switch to a diffusion theory calculation when one considers an opaque region. This is indeed done in the SPUTTER program.

In the form outlined in this section the two stream method is not applicable at high altitudes where the amblent alr has a density less than about $\rho / \rho_{0}=10^{-4}$. At such densities the air becomes transparent In the spectral region where ${ }^{B_{v}}$, has its maximum and the fireball has no opaque region. There is still a significant amount of radiation at frequencles above and below this window but one has to devise new methods for dealing with this problem. At these altitudes the mathematical difficulties are further aggravated by the non-spherical energy deposition which takes place when the mean free path of x-rays get large compared to the atmospheric scale height. Eventually, say at about $\rho / \rho_{0} \approx 3 \times 10^{-6}$ the air becomes transparent in all parts of the spectrum and thermal radiation is no longer a significant factor. References
Chandrasekhar, S., Radiative Transfer, Dover, 1960.
Hillendahl, R.W., LMSC Report 3-27-64-1, DASA 1522, 1964.
Magee, J.L. and J.O. Hirschfelder, Chapter 3 of Los Alamos Report LA 2000, 1953.

Marshak, R.E., Phys. Fl. 1, 24، 1958.
Mustel, E.R., in Theoretical Astrophysics, by V.A. Ambartsumian, ed., Pergamon Press, 1958.

Richtmyer, R.D., Difference Methods for Initial-Value Problems, Interscience, 1957.

Von Neumann, J. and R.D. Richtmyer, J. of Appl. Phys. 21, 232، 1950.
Churchill, D.R., S.A. Hagstrom and R.K. Landshoff, The Spectral Absorption Coefficient of Heated Air, JQSRT 4, 291, 1964.

FIG. 1-1 RAYS CONVERGING UPON ZONE 4 WHICH ARE USED TO COMPUTE I_{v} AS FUNCTION OF ANGLE

FIG. 1-2 SKETCH OF TEMPERATURE PROFILE IN A FIREBALL INDICATING OPTICAL PROPERTY OF THE AIR

FIG. 1-3 TYPICAL ENERGY DEPENDENCE OF ABSORPTION COEFFICIENT

Chapter 2. THE PHYSICS OF FIREBALLS

2.1 Introduction

A nuclear explosion in the atmosphere creates a fireball whose development depends in large measure on the physics of hot air. All of the previously discussed properties of hot air and all of the mechanisms for energy transport developed in previous chapters are a part of nuclear fireball physics. However, these energy transforming and transporting relations and the detalled knowledge of the properties of air find considerably wider application. They have or can contribute to the study of stellar dynamics, the nature of stellar atmospheres, the radiation from various astrophysical sources, and they can aid in the study of hypervelocity flight, upper atmosphere physics, aurora, and other atomic and molecular physics problems which involve high temperatures.

It is certainly the case that the information presented in these previous chapters makes the conditions created in a nuclear explosion more understandable. Some knowledge of air heating mechanisms, of air excitation, of radiation transport, and of hydrodynamics, of absorption properties, and of the thermodynamics of air is necessary before a fuil description of a nuclear explosion can become more than heuristic.

Much of the present knowledge about fireballs has been gleaned from test observations, but by far the greatest detall has come from numerical computer calculations, as have the quantitative estimates of fireball interior dynamics which appear in this chapter. Calculations of widely varying detail and sophistication now abound, and it is not the intention in this chapter to review such results or analyze computing methods. Most current calculations rely for their measure of success on the extent to which the physical concepts and properties covered in the
preceding chapters have been taken into account in a mathematical model. The principal objective of this chapter is to outline the physical features of nuclear fireballs and their thermal radiations, stressing where possible those factors which are most general and which provide the best understanding on which to base predictions and extrapolations. The approach adopted is to begin by considering a small yield explosion (l kiloton) at sea level and to describe the sequence of events which occur unencumbered with interactions from the earth's surface or inhomogeneous environments. This development will then be extended to higher yields and altitudes. There will be no attempt at completeness and no great concern for quantitative rigor, but it is intended to display as much as possible the current understanding of the physics of nuclear fireballs.

2.2 One kiloton at sea level

A one kiloton explosion in a sea level atmosphere provides an appropriate example for an initial examination of the sequence of events that constitute a fireball history. The now familiar usage of kilotonage and megatonage refers to the total energy release in a nuclear explosion with the usual metric prefixes for a thousand or a million and with the understanding that a ton of high explosive - TNT - releases 10^{9} calories of effective energy, i.e., one gram of TNT is taken as equivalent to one kilocalorie or 4.185×10^{10} ergs.

For any nuclear explosion the sequence of events is remarkably complex. In following its development for this one kiloton sea level explosion, the reader may appreciate that the present understanding,
although not complete, has become quite detailed and much of it has grown directly from the material reviewed in this series of volumes.

The nuclear energy is released in an extremely short time - a small fraction of a microsecond - and always in a small mass and volume. It is the properties of this small mass, constituting the weapon itself and its carrier that determine the early source of energy for the fireball, and some of these properties may influence the character of the later thermal radiation. Everything starts in this nuclear source and all of the initial radiations - gamma rays, neutrons, and x-rays - are generated by it. However, the air or other immediately surrounding material absorbs almost everything emitted within a few hundred meters and the nature of the observable fireball is largely determined by the properties of this surrounding air. For our example of one kiloton in a sea level atmosphere, the air within a few feet of the weapon stops nearly all of the x-rays, and the prompt gamma rays and the neutrons have removal mean free paths of about 400 and 240 meters, respectively. These rapid absorptions make knowledge of specific details of the nuclear device largely unnecessary in describing the fireball phenomena. Consequently, we shall be able to proceed without reference to classified aspects of nuclear weapons and yet without significantly truncating our description of the fireball and its thermal radiations.

The fraction of the energy which may be radiated out of the weapon as x -rays before it begins to blow apart under hydrodynamic action depends largely on its yield-to-mass ratio and to some extent on other construction details. This fraction may range from almost nothing at all (or a very small percent) to a significantly more than 80% of the total
energy generated (Glasstone, 1962; Brode, 1964 b).
Before the air has had a chance to re-radiate any of the energy deposited by the x -rays, the bulk of this energy is concentrated in a relatively small sphere and at a temperature which is typically of the order of several million degrees K. There is, however, a small fraction of x-rays, from the high frequency end of the spectral distribution function, which penetrates to a distance of perhaps a few meters, and heats this shell to temperatures in the $10,000^{\circ} \mathrm{K}$ range. Energywise this heating is insignificant but it makes a contribution to the fireball phenomenology which is of some interest. By consulting the table of mean free paths on p. 447 of (3) * we discover that this shell is opaque. As long as it exists such an opaque shell hides the much hotter sphere on its inside and all that can be observed is the radiation from the shell itself, which is comparatively dim.

This phase is always very short-lived and terminates when the radiation from the center floods into the shell and heats it up. During the next phase the fireball can be characterized rather well as an extremely high temperature sphere of air surrounding the nuclear source and showing a fairly sharp temperature drop at its edge. The interior of this high temperature sphere may be at a fairly uniform temperature, and the whole may contain quite a large fraction of the nuclear explosion energy in the form of heat. Some small fraction always remains in the dense bomb vapors, but most of the early phases of the fireball development are quite independent of the details of the weapon design. The subsequent explosion and radiation behavior can be derived almost entirely from the properties of this hot air. Such a model will be less true in high altitude or space

[^3]environments where the immediate external surroundings fail to contain as thoroughly the explosion energy because they lack sufficient opacity or optical thickness.

Throughout the explosion development, radiant energy is emitted by the fireball. That fraction which is transmitted by the cold exterior atmosphere is called thermal radiation. The rate of energy emission, or radiated power, has shape as shown in Fig. 2-1. If the opaque fringe layer has been penetrated early enough and if the instruments used for measuring the thermal power have sufficient time resolutions, the signal will include the early peak which is shown as a dotted line. Otherwise, one sees the two-peak curve which is drawn as a full line. The explanation of this curve is an important objective of any theory.

Although it is a rather simple exercise, it is instructive to note the rather small size of air volumes required to contain the large amounts of energy at the high temperatures created by the absorption of the initial flux of x-rays. The following table indicates the radii of spheres for a few examples of energy content and temperatures. These temperatures, of course, are too high for the air to remain that hot for very long, but in the immediate first fractions of a microsecond these radii are representative of the sizes and temperatures of the earliest (x-ray) fireballs.

> Size of Spheres of Sea Level Air Necessary to Contain I KT, I MT or 100 MT of Energy at Various Uniform Temperatures

Temperature Mtlions of O_{K}	1 KT	1 MT	100 MT
$7 \mathrm{l} / 2$	$3 / 4 \mathrm{~m}$	7.5 m	35 m
6	1	10	46
5	$11 / 4$	12	57
4	1.6	16	74
3	2.1	21	100

In a very few microseconds, these fireballs would have grown much larger and much less hot by the continued diffusion of radiation into the external cold air.

For most considerations these earliest phases of x-ray deposition and re-radiation remain both obscure and of little probable importance. When the flux of source radiations has been sufficiently intense as to completely strip the electrons from the air ions, then that volume of plasma can offer only Compton scattering as further resistance to the x-ray flux or as opacity to its own re-radiation. The most appropriate physical model for the continued expansion of this low emissivity, high energy density region is neither by hydrodynamics (which requires relatively long times to accelerate masses of gas) nor by radiation diffusion which presumes many interactions over any appreciable temperature gradient. The growth of such a heated volume is a radiative process which can be characterized roughly by its emissivity, temperature, and volume together with the heat capacity of the external cold air. The single further physical characteristic necessary to include in a growth rate prediction is the fact that the surrounding air is essentlally opaque to the radiations from this hot air. Detailed knowledge of the opacity between this blackness at cold temperatures and its transparent nature at sufficiently high temperature is at this point unnecessary. Thus, the rate of energy lost, expressed as a grey-body loss rate, is the rate at which energy is deposited in the cold alr at the surface of the high temperature sphere, viz.,

$$
\begin{equation*}
\frac{d W}{d t}=4 \pi R^{2} \sigma T^{4} \mathrm{e} \tag{2,2-1}
\end{equation*}
$$

in which e is the emissivity, T the temperature of the not isothermal sphere, R its radius, and $d W / d t$ the rate of energy change. When an appropriate specific heat is introduced, a differential prescription for the volume growth and temperature drop results.

Following this approximation, one can express the rate of growth, $d R / d t$, in the same terms as

$$
\begin{equation*}
\frac{\mathrm{dR}}{\mathrm{dt}}=\frac{e \sigma T^{4}}{E \rho} \tag{2.2-2}
\end{equation*}
$$

In which E represents the internal energy per unit mass, and ρ the density of the air Just behind the front, while T is the inner temperature. The usefulness of this approximation in estimating the rate of growth of a partially transparent fireball is largely dependent on the accuracy with which average or "effective" interior temperatures, specific energles, and emissivities can be chosen. During the most rapid expansion, the interior is likely to be considerably non-isothermal, i.e., the interior may be more than twice as hot as the region just behind the front. The dependence on the fourth power of the temperature makes this rate quite sensitive to such differences. The most uncertain quantity is likely to be the effective emissivity, since it represents some average over the emitting region, and may also disguise some geometric dependence - not all the radiation being emitted radially. Appropriate choices of effective emissivity and temperature may make this simple formula appropriate for predicting the growth rate during the subsequent radiation diffusion phase.

The temperature profiles illustrated in Fig. 2-2 are typical of this early radiative growth for a one kiloton sea level burst. The curves represent the air temperatures as a function of radius for six selected instants in time. The dashed curve indicates the shock temperatures. It is the lowest temperature within the fireball at each of these times. After about 15 microseconds, the radiation diffusion growth becomes so slow that a shock wave begins to form, to compress the newly engulfed air and heat it to a temperature substantially below that of the radiatively heated inner sphere. With either the early radiative expansion or the subsequent adiabatic expansion behind the forming shock front, the inner temperatures drop with time in an approximately exponential fashion. During this early growth, the power radiated or the thermal radiation to points outside the fireball is not a significant fraction of the energy it contains. 'The time is short, the size is small, its opacities are high, and the fireball exterior so well shields the hotter core that the radiation out is less than half a per cent of the avallable energy.

Of course, the radiative properties are influenced by the alr density as well as by the temperature, and the gradual formation of the shock causes an appreciable increase in the air density at the fireball surface (as much as tenfold increase at sea level). In the process, the outer surface of the fireball passes from a rather diffuse radiation-driven front to a sharp, dense shock front. Fig. 2-3 shows some typical early density profiles, in which the shock is seen to grow and the fireball interior is seen to expand to much less than the external ambient density.

Reference to the opacities for alr as given in Volume 3 will
confirm that the shock front at these early densities and temperatures is quite opaque. For instance, at the $250 \mu \mathrm{sec}$ time of Figs. 2-2 and 2-3, the emission mean free path for a shock temperature of $30,000^{\circ} \mathrm{K}$ and a density of 8 times normal is about 0.01 cm . The fireball will expand to much lower temperatures and much larger size before anything behind the shock front will become visible. It is during this period that the thermal radiation rate decreases toward a minimum and the fireball appears to grow dimmer. (Fig. 2-1, before one millisecond,)

If the fireball growth rate defined in Eq. (2.2-2) is computed for the earliest time illustrated in the temperature profiles of Fig. 2-2, assuming for the moment an emissivity of unity, the rate is about $4.4 \times 10^{8} \mathrm{~cm} / \mathrm{sec}$. This rate is too high by an order of magnitude in comparison with results of the numerical calculation example. The calculation showed that the expansion at this 1.2 microsecond time was still being determined by radiation diffusion. The calculation, however, also treated the earliest times by diffusion, and not (as suggested above) by transport within a transparent heated region with a radius less than one mean free path for the emitted radiation. The appropriate mean free path for diffusion is the so-called Rosseland average, hereafter abbreviated as Rmfp. The Rmfp is defined as

$$
\begin{equation*}
\lambda_{R} \equiv \frac{\int_{0}^{\infty} \lambda_{\nu} \frac{d B \nu}{d T} d \nu}{\int_{0}^{\infty} \frac{d B \nu}{d T} d \nu} \tag{2.2-3}
\end{equation*}
$$

In which λ_{ν} is the spectral mean free path, $B_{\nu}(T)$ the Planck function, and $\int_{0}^{\infty} d \nu$ denoting integration over all frequencles. The Rmfp used in
the calculation approaches the Compton limit at high temperatures, however, and allows the rate of growth to be equally fast. In fact, without special consideration for relativistic effects, the diffusion growth can exceed even the speed of light.

At the earliest time illustrated in Figs , 2-2 and 2-3, the fireball has grown to more than one mean free path in radius which reduces the effectiveness of the inner temperature in driving the continued expansion. A more heuristic interpretation of the growth rate formula allows the emissivity to be interpreted as a resistance parameter which reduces the growth rate to less than the blackbody rate for that central temperature. An alternative interpretation treats this efficiency factor as one which compensates for the use of the shielded innermost temperature when the effective temperature is at some radial position further out and is lower in value, i.e., $e \approx\left(T_{o} / T_{i}\right)^{4}$ where T_{o} is the effective outer temperature and T_{i} is the screened central temperature. A crude measure of this correction and of an appropriate value for this viscosity constant might be the ratio of the Rmfp to the radius of the front, i.e., the reciprocal of the number of mean free paths between the radiating interior and the front. For the diffusion approximation, such a correction might better be expressed in terms of the local temperature gradient as well.

The inner temperature of our example calculation at 1.2 microseconds is around $10^{6} 0^{\circ}$ (Fig. 2-2) and the density is still normal $\left(1.29 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}\right.$) (see Fig. 2-3). The Rmfp is a bit less than one meter, while the radius is about 3.2 meters. Taking e to be $1 / 3.2$ brings the growth rate down to about 1.3×10^{8}, which is still high compared to that for the numerical calculation. The mean free path decreases rapidly as the temperature falls below $10^{6}{ }^{\circ} \mathrm{K}$, however, and since the front at $1.2 \mu \mathrm{sec}$ is at around half the interior temperature, a more appropriate mean free path might be between 0.92 (the value at $10^{6} \mathrm{O}_{\mathrm{K}}$) and 0.12 (the value at $5 \times 10^{5} \mathrm{o}_{\mathrm{K}}$). Taking the average of their reciprocals, i.e., averaging the opacities, gives about 0.2, so that the correction factor, e , becomes $0.2 / 3.2$, and the corrected rate becomes $\sim 3 \times 10^{7}$ which agrees well with the growth rate at that time from the detalled diffusion calculation.

The most appropriate specific energy and density values for use in the growth rate approximation are those just behind the front of the wave, since it is to those conditions that the cold air is to be heated, 1.e., it is that heat capacity that will absorb the subsequent radiation energy flux. Fig. 2-4 displays the specific energy profiles for this one kiloton example for the same time as those of Figs. 2-2 and 2-3.

It is interesting to test the simple growth rate formula (Eq. 2.2-2) against the fireball growth speed that results from the numerical calculations. The calculation should show a rate faster than hydrodynamic shock growth until the radiation growth has fallen below the speed of hydrodynamic motions, and this simple form should show a comparable rate until that time, then a much slower rate as the shock wave takes over.

Fig. 2-5 compares these rates for the same time period as covered by the profiles of Figs. 2-2, 2-3, and 2-4 and beyond. In these comparisons, several approximations are represented by dashed curves, while the numerical calculation rate is shown as a solid curve. The rate calculated as blackbody at the inner temperature, shown as circled points, is clearly too high at all times. Even when the lower temperatures of the outer edge of the hot region are used to determine a blackbody rate (the triangles Δ of Fig. 2-5), the rate is at all times toa high.

When the radiative resistance parameter is represented as the ratio of the Rmfp to the hot region radius, using the Rmfp evaluated at the hot interior temperature, the modified rate is still high at the early times when diffusion is still dominant (the square points of Fig. 2-5). It drops precipitously as the interior cools and becomes opaque at just the times when a shock begins to form (at about 10 microseconds in this example). Although this approximation is not correct in value, the sharpness of the decrease as hydrodynamics takes over can make it a useful indicator of the transition onset, and so a reasonable prediction tool.

The more accurate estimate of the early diffusion growth rate, involving the averaged opacity between interior and front, is also more subject to error due to the difficulty in judging appropriate front conditions. These estimates are indicated in Fig. 2-5 by diamonds. These values are closest to the numerical calculations rate of growth at the earliest times when diffusion is the dominant mechanism. The earliest profile front temperatures are difficult to define because the front is not sharp. The rate of growth estimated at these approximate front temperatures with
a corresponding resistance parameter leads to the estimates indicated by the triangles \triangleright in Fig. 2-5. Again, the shock formation times is denoted by a sharp drop in the rate estimated in this manner. Both of the blackbody rate curves (upper curves of Fig. 2-5) show a fairly sharp drop at shock formation time. Such a simple but uncertain formula may be preferable to the use of the radiation resistance notion in determining shock formation radius and time. Since in this range of temperature and densities, the Rmfp decreases with decreasing temperature as about the fourth power of the temperature, using the Rmfp as a correction factor then means that the adjustment parameter is as sensitive to temperature changes at the blackbody rate itself. Such critical opacity dependences may provide some sharp distinctions in estimates but at the same time present some hazards in choosing effective temperatures too casually.

After shock formation, the rate of growth of the fireball should follow the shock growth itself until the shock cools to transparency. The shock speed for a strong shock is approximately given by

$$
\begin{equation*}
\dot{\mathrm{R}}_{\mathrm{s}} \sim \sqrt{\frac{\left(\gamma_{\mathrm{s}}+1\right) \mathrm{P}_{\mathrm{s}}}{2 \rho_{\mathrm{o}}}} \tag{2.2-4}
\end{equation*}
$$

where $\gamma_{S}=\left(P_{S} / \rho_{S} E_{S}\right)+1, \rho_{o}$ is the ambient air density and P_{S}, ρ_{S}, and E_{s} are shock front values of pressure, density and internal specific energy. This approximation is shown in Fig. 2-5 by the symbol \triangleleft. For the earliest times, the expansion is faster than this shock rate, but at later times it corresponds well.

Using the particle velocities (u_{s}) at the front and the density at the front (through the mass conservation relation) provides the relation

$$
\begin{equation*}
\dot{R}_{s}=\frac{u_{s} \rho_{s}}{\rho_{s}-\rho_{0}} \tag{2.2-5}
\end{equation*}
$$

The rate derived from corresponding values of u_{s} and ρ_{s} for the numerical calculation is indicated in Fig. 2-5 by triangles pointing down (∇). After nuclear shock catch-up this curve coincides with the solid curve for the directly computed rate.

In the temperature region of interest, a shock can be pictured as a sharp gasdynamic jump imbedded in a region of radiation-induced temperature variation (Fig. 2-6). The internal structure of this type of wave has been investigated extensively by Zeldovich (1957), Raizer (1957), and Heaslett and Baldwin (1963), to name a few, all of whom employed the equations of steady continuum gas dynamics with gray radiative transport.

The important feature of this picture is the temperature precursor which runs ahead of the sharp front. This precursor is created by the radiation from the high temperature region behind the sharp front. One can estimate the temperature of the precursor by equating the power radiated by this front with the rate of heating in the precursor. In the resulting relation

$$
\begin{equation*}
\rho u e_{p}=\sigma T_{s}^{4} \tag{2,2-6}
\end{equation*}
$$

ρ, u and e_{p} stand for the ambient air density, the shock velocity and the internal energy of the air in the precursor. From the latter quantity and the equation of state, one can then obtain the temperature of the precursor. Using the Hugoniot relations (Section 5.1 of (4)) and a simple analytic fit
to the equation of state, one obtains at sea level the relation

$$
\begin{equation*}
\mathrm{T}_{\mathrm{p}}=3.45 \times 10^{-7} \mathrm{~T}_{\mathrm{s}}^{2.17} \tag{2.2-7}
\end{equation*}
$$

For a shock temperature of $10^{5}{ }^{\circ} \mathrm{K}$ we calculate a precursor temperature of $23,000^{\circ} \mathrm{K}$ and note that a millimeter layer of air at that temperature is opaque. Up to the time when the shock temperature drops to $10^{5} \circ_{\mathrm{K}}$ all the thermal radiation comes therefore from the precursor. To make a quantitative evaluation of the power radiated during this phase requires a more detailed analysis of the radiative transfer problem. Qualitatively one can see that the power must decrease with time and this is the decrease following the early peak in Fig. (2-1).

As the shock temperature drops below $10^{5}{ }^{\circ} \mathrm{K}$, the precursor cools to where it gradually becomes transparent so that the radiation from the shock front begins to shine through. When this happens the power-time curve goes through the minimum which is shown in Fig. 2-1 as the shock precursor minimum (SPM). While the shock front gets more and more exposed, the power rise because of the exposure is eventually compensated by the temperature drop of the shock itself and at that time the power level reaches the maximum which is shown on Fig. 2-1 as the shock exposure maximum (SEM).

During the phase following this maximum the rate of thermal radiation loss from the fireball can be characterized as that from a blackbody sphere at the shock front temperature and of radius equal to that of the shock radius. Although such a rate describes the fireball emission, the power observed at any distance will contain only that fraction which the cold air
outside the fireball is capable of transmitting. To a good approximation, that fraction can be calculated by assuming a simple cut-off in the transmitted spectrum. Values of this fraction $f\left(T_{s}, \nu_{C}\right)$ where ν_{C} is the frequency corresponding to a cut-off at $1860 \AA$ (representing the edge of the O_{2} absorption) are shown as functions of the temperature $\left(\mathrm{T}_{\mathrm{s}}\right)$ in Fig. 2-7). The fraction is evaluated from a tabulation of the Planck radiation function and its partial integral by Gilmore (1956). The fraction is defined as

$$
\begin{equation*}
f\left(T_{s}, \nu_{c}\right)=\frac{15}{\pi^{4}} \int_{0}^{x_{c}} \frac{x^{3} d x}{e^{x}-1} \tag{2.2-8}
\end{equation*}
$$

where $x_{c}=h \nu / k T_{s}$ and h and k are Planck's and Boltzmann's constants, respectively ($\mathrm{h} \approx 6.625 \times 10^{-27} \mathrm{erg} \mathrm{sec}, \mathrm{k} \approx 1.380 \times 10^{-16} \mathrm{erg} /{ }^{\circ} \mathrm{K}$).

During this phase which lasts until the shock temperature has dropped to so low a value as to make the shock front transparent, the following simple expression characterizes the thermal radiation rate for an air burst nuclear explosion:

$$
\begin{equation*}
P \approx 4 \pi R_{s}^{2} \sigma T_{s}^{4} f\left(T_{s}, \nu_{c}\right) \tag{2.2-9}
\end{equation*}
$$

in which R_{s} represents the shock radius, T_{s} the temperature, σ the Stefan-Boltzmann constant ($5.672 \times 10^{-5} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{deg}^{4} / \mathrm{sec}$) and $f\left(\mathrm{~T}_{\mathrm{s}}, \nu_{\mathrm{C}}\right)$ the fraction passed by the cold air.

Unit optical depth for most frequencies grows longer as the shock front cools, so that emission from hotter air behind the front begins to shine through. The shock front itself becomes fainter and appears to pull ahead of the luminous fireball, a phenomenon which is referred to as the
"breakaway" (Gladstone, 1962, Section 2.110). Because the shock has been carrying the shock-heated air outwards with its expansion, a rather steep gradient in temperature is maintained just behind the front, so that a slight increase in unit optical depth exposes higher temperatures but at no appreciable decrease in radius of effective radiating surface. At this time the power curve goes through the principal minimum (PMIN) in Fig. 2-1.

Fig. 2-8 indicates the geometry of fireball temperatures (in crosssection) at a time somewhat beyond the time of minimum thermal power. While the thermal radiation increases, and while progressively deeper parts of the fireball are exposed, the hydrodynamic expansion dominates so that the visible or apparent fireball size continues to grow. Eventually, the luminous fireball stops expanding and the power output reaches the final maximum (FMAX).

Throughout this radiative and then hydrodynamic expansion of the fireball, right up to the time of minimum light intensity, something less than half of one percent of the total yield has been radiated out of the fireball. Both integrals of the measured power-time data from tests and of the simple expression given above for radiation from the fireball (as determined by shock front conditions) lead to an answer close to 0.44%. In the latter integral, the properties of the shock front are sufficiently well defined by almost any calculation - even those not accounting for radiation transport in the early phases, but necessarily taking account of the real gas properties of air. (e.g., Brode, 1956a,b).

Since the air just behind the shock is much hotter and much less dense than the air at the front itself (see Figs. 2-2, 2-3, and 2-4), the rate of thermal radiation increases rapidly when that air is exposed, until the hottest temperatures at the back of the steep gradient
behind the shock front become visible and are radiating directly to the exterior. Thereafter, as the size of the radiating sphere shrinks and the interior cools, the rate decreases. This is the period in which the fireball history comes closest to the cooling wave notion expressed in a simple form by Zel'dovich, Kompaneets and Raizer (1958) and applied into a fireball theory by Bethe (1964). The notion is that a recognizable and fixed form cooling wave erodes the hot fireball interior, beginning at the exterior and working inwards. After the shock front has become transparent, such a cooling wave process is very likely operating, but it is not at first working into a fixed or uniform temperature or density, and it is not shrinking the fireball. The outward hydrodynamic expansion is still too strong. When the outer regions have all become sufficiently cool and transparent so that the inner radiation-heated region is exposed, then the conditions suggested for a cooling wave are approximated. Even then the temperatures are not constant and the surface area is shrinking rapidly, so that the cooling rate decreases. When this interior sphere has cooled to below about $10,000^{\circ} \mathrm{K}$, the whole of the fireball has become relatively transparent, and the subsequent radiation losses are characterized more by a grey body approximation, i.e., characteristic of a volume of air of low emissivity - one of less than undt optical thickness. It may also still be expanding adiabatically, and contributing energy to the shock growth.

Temperature profiles spanning this period from principal minimum through final maximum and on to a transparent fireball are illustrated in Fig. 2-9. For a yield of one kiloton, the cooling wave is less obvious as a wave than as a rather sudden depletion of the hottest interior region. At larger
yields, where more optical thickness is represented at every stage, the progress of a cooling wave from outside toward the center is more easily imagined (Brode, 1964a, Fig. 5, b Fig. 15).

In this rather complex power radiated history of two or three maxima, as illustrated in Fig. 2-1, the final pulse represents a total energy of 30 or 40% of the total yield of the nuclear device. When all the energy is accounted for, including that in the infrared which originates in shock heated air outside the visible fireball and is radiated only very slowly, the fraction may be even larger.

There are several features of this one kiloton explosion that have not yet been mentioned and that are of lesser influence on the thermal radiation and fireball behavior at sea level, but which become relatively more important at other yields or altitudes. One such feature is a second shock wave which originates within the bomb vapors, traverses the early sphere of hot air behind the radiation front, and overtakes the strong shock that forms the fireball surface at later times. This debris or bomb shock is seldom in evidence in sea level explosions, and has lost most of its energy long before it overtakes the main shock, so that it contributes little to the fireball surface or thermal radiation histories. Because the hot interior of the fireball is for most of the fireball expansion a region of long mean free path, it is a region of nearly uniform temperature. When the case shock compresses and heats this air further, some of that heat is promptly re-radiated ahead, forcing this interior shock to behave isothermally rather than adiabatically. This isothermal shock can lose energy very rapidly by this means, and may persist only through the
continuation of its outward momentum.
A history of the radil of this shock and other fronts in this kiloton example is shown in Fig.2-10. When this debris shock travels outward to the edge of the fireball, it encounters a sharp discontinuity in density. At that point, a reflected shock originates and is returned inward to implode upon the origin. Here again, is a phenomenon which has no consequence for this example, but may be prominent in high altitude events. The vaporized bomb expands along behind this debris shock, but at sea level is not visible until very late - after the second maximum in the thermal power. This bomb debris is not realistically treated in any of the usual calculations, since they invariably assume radial symmetry and allow no mixing or turbulent flow. When it emerges in the transparent fireball at late times, the vaporous debris has become highly turbulent and has evidently mixed with considerable fireball air.

Although Fig. 2-10indicates a transition from radiation expansion to strong shock expansion, the radiation diffusion does not stop. As the shock brings down the density in the interior air, the opacity of that air decreases also, and the radiation is allowed to diffuse into some of the now shock-heated air. The dotted curve below the shock front curve of Fig.2-10indicates the position of the radiation front. Most of its outward excursion is due to the flow of air in the expansion behind the shock itself. At times later than shown in Fig. 2-10, the radiation front and the visible fireball drop behind. The short dashed curve near the end of the shock front curve of Fig. 2-10 represents a position close to the fireball front - being the locus of points at $5000^{\circ} \mathrm{K}$ - with higher temperatures inside of that radius, and colder temperatures outside.

The continued flow of radiation is made more obvious in a plot of the temperature histories of several shells of gas representing the air that was shocked to a particular temperature, cooled in the subsequent adiabatic expansion, but then reheated by the radiation wave following. Such a set of curves are show in in Fig. 2-11, where at particles shocked to $10^{5}, 70,000$ and $40,000^{\circ} \mathrm{K}$ the adiabatic cooling is arrested by the arrival of the radiation diffusion wave which causes that shell of air to rise in temperature again. The air starting at the $20,000^{\circ} \mathrm{K}$ shock point is never over-run by the radiation wave, 1.e., the radiation wave stops before it gets that far, having run out of energy and not being added by further expansion which would help to reduce the opacity of the cooler air in front of $1 t$.

A great many nuclear weapon applications, tests, and effects interests Involve the thermal and fireball effects of nuclear explosions on or close to the surface of the earth. Many interesting and novel interactions occur which are not evident in air bursts well away from the surface. However, there is no intention of providing a review of these factors in this current effort. It should suffice to point out that all of the essential features which are described and followed here are also an important part of surface bursts, while the latter are further complicated by the early injection into the fireball of massive amounts of earth material, and by the geometric distortions of the fireball that occur as a consequence of shock and thermal reflections from the earth's surface. The change in radiator shape from spherical to at best hemispherical or worse a partially obscured hemisphere means that the thermal flux to other points on the earth's surface will be less than that from an air burst. Total flux at
points in the air above the burst may at the same time be increased.
As the earliest pictures of nuclear explosions (Glasstone, 1962) clearly show a further consequence of the ground Involvement is the "dust skirt" which precedes the fireball shock and largely obscures the base of the fireball. Although not visible in any of the pictures, there must also be vast amounts of earth shovelled into the hot fireball Interior at an early time (Brode and Bjork, 1960), and this material cannot fall to have profound effects on both the temperature and thermodynamic state of the f1reball gases and on the opacities or optical propertles of that region. Test observations indirectly attest to the influence of such surface effects.

Observations and measurements at very late times in the fireball history show that the radiation rate tralls off with a very long tail (as in Fig. 2-1) and comes from shapes other than simple spheres. The fireball at late times is like a bubble in the atmosphere - having very low densities in its interior - and so it rises, and in rising breaks up at the bottom to transform itself into the familiar atomic cloud ring or torrold which rolls its way up through the atmosphere. The torroldal circulation that is induced is quite strong and serves to severely limit mixing of the hot fireball gases with the exterior cold air, thus prolonging the existence of air and debris at temperatures of thousands of degrees Kelvin, while the cloud rises in the atmosphere. When much earth material and/or water vapor is present, the late fireball remains opaque, and the rate of late radiation is more determined by the rate of turbulent mixing which brings hot gases to the cloud surface rather than by the radiation transport
properties alone. For an air burst well above the surface, however, the late fireball becomes quite transparent, so that only a faintly luminous ring assures us that the rise and circulations are much the same as for lower bursts.

2.3 Other yields and altitudes

The example of a one kiloton detonation at sea level contains all the basic physical phenomena which enter into consideration at ether yields and at altitudes up to about 70 km . The overall appearance is, nevertheless, appreciably different since the individual events which are responsible for the various maximum and minima in Fig. 2-1 occur at different times.

In carrying out a discussion of these changes, it is useful to note that the relation between shock radius and time can be approximately represented by a hydrodynamic scaling law. To formulate this we introduce the scaled variables

$$
\begin{align*}
& \mathrm{R}^{*}=\left(\frac{\bar{\rho}}{Y}\right)^{1 / 3} \mathrm{R} \tag{2.3-1}\\
& \mathrm{t}^{*}=\left(\frac{\bar{\rho}}{\bar{Y}}\right)^{1 / 3} \mathrm{t} \tag{2.3-2}
\end{align*}
$$

where Y is the yield of the explosion and $\bar{\rho}=\rho / \rho_{\rho}$ the ambient air density relative to that at sea level. In our 1 kiloton sea level example the scaling factors are of course unity.

The scaling law is not valid until after the debris shock has caught up with the somewhat slower shock which is driven by only a fraction of the total yield. The scaling law can be deduced from the strong-shock solution for a point source (Taylor, 1950; and Sedov, 1959). This limits the validity of the scaling laws at late times when the shock becomes weak. The law obtained in this manner takes the form

$$
\begin{equation*}
R_{s}^{*}=k\left(t^{*}\right)^{2 / 5} \tag{2.3-3}
\end{equation*}
$$

where the subscript s denotes that the value is taken at the shock front. From the radius $R_{s}=20 \mathrm{~m}$ read off Fig. $2-10$ for $t=1 \mathrm{msec}$, one determines the proportionality factor to be

$$
\begin{equation*}
\mathrm{k}=20 \mathrm{~m}(\mathrm{msec})^{-2 / 5} \quad(\mathrm{KT})^{-1 / 5} \tag{2,3-4}
\end{equation*}
$$

In the above scaling law the scaling factors cancel out of the expression for the shock velocity

$$
\begin{equation*}
\frac{\mathrm{dR}_{\mathrm{s}}}{\mathrm{dt}}=\frac{\mathrm{dR}_{\mathrm{s}}^{*}}{\mathrm{dt}^{*}}=\frac{2}{5} \mathrm{k}\left(\mathrm{t}^{*}\right)^{-3 / 5} \tag{2.3-5}
\end{equation*}
$$

which makes this velocity a function of t^{*} only. Applying the Hugoniot relations one can now show that the temperature T_{s} behind the shock is
also very nearly a function of t^{*} only. This is not an exact result because it depends on certain assumptions about the equation of state which are only approximately true. If one checks the prediction that T_{S} is a function of the scaled time only against computed results, one finds that it fits the changes with yield at a given altitude very well. The changes with altitude at a given yield are not given with quite the same accuracy, but are still sufficiently close for most purposes.

It should be noted that the above scaling procedure differs somewhat from the so-called Sachs scaling where one introduces the variables

$$
\begin{align*}
& \widetilde{R}=(p / Y)^{1 / 3} R \tag{2.3-6}\\
& \widetilde{\mathrm{R}}=(\mathrm{p} / Y)^{1 / 3}(\mathrm{p} / \rho)^{1 / 2} t \tag{2.3-7}
\end{align*}
$$

If one expresses the ambient pressure and density p and ρ, the yield Y and the variables R and t all in the same system of units, the scaled variables are dimensionless. It is more convenient, however, to replace p and ρ by the ratios $\bar{p}=p / p_{o}$ and $\bar{\rho}=\rho / \rho_{\rho}$ relative to the sea level values, and to express Y as before in KT. With this choice, the strong shock relation between \widetilde{R} and \widetilde{t} is the same as between R^{*} and t^{*}, i.e. Eq. (2.3-3) with the same value of the constant k.

The two methods of scaling differ in regard to what are considered similar situations. For the starred variables similarity implies that for example the hydrodynamic velocity and the temperature are unchanged; for the variables with the tilde the Mach number and the temperature ratio T / T_{0} are unchanged. Either choice is acceptable, but ours has the advantage of using only one parameter to characterize the altitude.

From the time of shock formation until breakaway the thermal radiation comes partly from the shock precursor and partly from the shock front, and it is evident that the shock temperature is a major factor in determining the timing of the maxima and minima during this period. At a given altitude where one has a one-to-one relation between shock and precursor temperature (see Eq. 2.2-7 for the sea level case) it is fairly accurate to state that the shock formation maximum, the shock precursor minimum and the shock exposure maximum occur at fixed values of the shock temperature and therefore at fixed values of the scaled time. As one considers different altitudes the relation between T_{p} and T_{s} changes and one finds different values of the scaled times associated with these features of the power curve.

After breakaway the radiation comes from points to the inside of the shock front whose locations depend on the optical properties of the air and in turn on the temperature and density distribution. This is a radiative transfer problem and hydrodynamic scaling, where times vary as the cube root of Y, is replaced by radiative scaling, where times vary approximately as the square root of Y (Glasstone, 1962, section 7.92).

Altitude scaling is a more difficult problem than yield scaling. We have already mentioned the effect of the changing relation between T_{s} and T_{p}. To this we must add that the relative importance of hydrodynamics and radiation transfer shifts with increasing altitude in favor of the latter. Thus shocks form more slowly and radiation is emitted more rapidly as one goes to higher altitudes. As a result the features before breakaway are increasingly delayed and the maxima and minima tend to become weaker. The final radiative pulse on the other hand advances in time and becomes more prominent. At about 50 km the early features have become washed out and what was the final pulse is now the only pulse.

References

Bethe, H.A., Theory of the Fireball, LASL, LA-306́, Feb. 1964

Brode, H.L., Point Source Explosion in Air, RAND, RM-1824-AEC, Dec. 1956 (a)

Brode, H.L., The Blast Wave in Air Resulting from a High Temperature, High Pressure Sphere of Air, RAND, RM-1825-AEC, Dec. 1956 (b)

Brode, H.L., A Review of Nuclear Explosion Phenomena Pertinent to Protective Cnnstruction, RAND, R-425-PR, May 1964 (b)

Brode, H.L., Fireball Phenomenology, RAND, P-3026, Oct. 1964 (b)

Brode, H.L. and R.L. Bjork, Cratering from a Megaton Surface Burst, RAID, RM-2600, June 1960

Gilmore, F.R., A Table of the Planck Radiation Function and its Integral, RAND, RM-1743, July 1956

Glasstone, S., The Effects of Nuclear Weapons, Superintendent of Documents, 1962

Heaslet, M.A. and B.S.Baldwin, Predictions of the Structure of Radiation-Resisted Shock Wavws, Phys.of Fluids, 6, 781, 1963

Raizer, Iu. P., On the Structure of the Front of Strong Shock Waves in Gases, J.E.T.P. 5, l242, 1957

Sedov, L.I., Similarity and Dimensional Methods in Mechanics, Academic Press, 1957

Taylor, G.I., The Formation of a Blast Wave by a Very Intense Explosion, Proc.Roy.Soc.(London), A201, 159, 1950

Zeldovich, Ia. B.J., Shock Waves of Large Amplitude in Air, J.E.T.P., 5, 919, 1957

Zeldovich, Ia.B.J., A.S. Kompaneets and Iu.P. Raizer, Cooling of Air by Radiation, J.E.T.P., 7, 882,1001, 1958

FIG. 2-1 THERMAL POWER RADIATED FROM ONE KILOTON AT SEA LEVEL

FIG. 2-2 EARLY TEMPERATURE PROFILES - 1 KT, SEA LEVEL

FIG. <-3 EARLY DENSITY PROFILES - 1 KT, SEA LEVEL

FIG. 2-4 EARLY ENERGY DENSITY PROFILES - 1 KT, SEA IEVEL

FIG. 2-5 COMPARISON OF VARIOUS APPROXIMATE RATES WITH EARLY FIREBALL GROWTH RATE

FIG. 2-6 FRACTION OF BLACKBODY RATE AT WAVELENGTHS LONGER THAN CUTOFF AT 1860A

FIG. 2-7 SHOCK TEMPERATURE PROFILES WITH AND WITHOUT RADIATIVE TRANSPORT

FIG. 2-8 FIREBALL THERMAL GRADIENTS AT TIMES NEAR MINIMUM LIGHT INTENSITY

FIG. 2-9 LATE FIREBALL TEMPERATURE PROFILES - 1 KT , SEA LEVEL

TIME (msec)
FIG. 2-11 AIR MASS TEMPERATURE HISTORIES - SHOWING ADIABATIC EXPANSION COOLING AND THE HEATING BY THE FURTHER GROWTH OF THE RADIATION DIFFUSION WAVE
(. ${ }^{\circ}$) ォ

Chapter 3. SUMMARY

As the reader of this report will have gathered any attempt at following the evolution of a fireball by numerical means utilizes a whole spectrum of facts and assumptions ranging all the way from being undisputable to being highly suspect. This is likely to leave him with a somewhat uncomfortable feeling about the reliability of such a calculation. In this summary we will put the finger on some of the underlying assumptions, point out what we know about their validity and evaluate how strongly our lack of basic information or of the willingness to spend computing dollars will influence the final product.

3.1 Equation of state

Nearly all calculations make the basic assumption that the air remains throughout in a state of LTE. Once this is accepted it follows that the relation between the various state variables can be found by the methods of statistical mechanics. The application of these methods is very straightforward and the results as presented in (1) and (3) ** are probably correct to within a few percent. In some instances analytic fits which were made to feed these results into a computer have been poor but this problem can certainly be overcome and should not contribute significantly to errors in hydrodynamics or other phases of the main calculation. Some problems may arise in the central region where one has debris rather than air and even more so in the transition region where one may have a debris air mixture. Fortunately many important results are rather insensitive to these details.

[^4]
3.2 Absorption coefficients

This subject has been discussed in detail in (2) and related facts are brought up in Chapter 1 of this volume. There are several ways of describing the absorption which differ in the amount of detail which is presented. The most detailed description consists of a listing of lines with intensities and line shape parameters on top of continuum. All these factors are subject to errors as we shall briefly discuss.

In the low temperature case where the lines are due to molecular systems the information comes largely from experimental spectroscopic studies. The limitations of our knowledge about frequencies and intensities is discussed in (2) Chapter 7. The information on line shapes is almost non-existent. To this one should add that one can hardly afford to include any but the strongest band systems. Even the rather minimal choice of eight band systems in the most recent version of the SACHA program brings the number of transitions to over 190,000 .

In the high temperature case the absorption comes from inverse Bremsstrahlung and from transitions in atoms and atomic ions. There is a strong continuum due to the first and due to photoionization. There is a fairly well developed theory and some experimental information backing it up. On top of the continuum is a large number of lines. A few levels have been observed experimentally but the majority, especially for the highly ionized atoms, have not been observed and must be obtained theoretically. It is certainly necessary to find the transition probabilities by quantum mechanical methods. These are so complex that one is forced to make radical approximations to get any answers and the results are not very reliable.

The calculation of the line contribution is the most elaborate part of the program and again one can hardly afford to include any but the strongest lines. This involves a somewhat arbitrary cut-off procedure whose practical effect can only be evaluated when one specifies how the absorption coefficient is to be used.

The detailed description of absorption with fine spectral resolution greatly exceeds the requirements of radiative transfer calculations. As shown in (2) Chapter 2, it is unfortunately difficult to define averages which permit satisfactory calculations. Thus Planck and Rosseland means which average μ_{ν} and μ_{ν}^{-1} respectively apply only in limiting situations; the one for very transparent, the other for very opaque media. Nevertheless such means are useful and have been calculated. In the specific case of line effects, mentioned in the preceding paragraph, the contribution is not very large until one reaches temperatures like $2 \times 10^{5} \mathrm{o}_{\mathrm{K}}$ and high densities.

Because of the many uncertainties entering the calculation of absorption coefficients one has no systematic way of estimating their accuracy. The responsible authors of opacity calculations are generally confident that their results lie within a factor of three of the true values.

In the intermediate temperature range where the opacity reaches a maximum, the accuracy is probably somewhat better. Because of the large opacity the averaging procedures, which are appropriate for radiative transfer calculations, put the most weight on those parts of the spectrum where μ_{ν} is small and very little weight on the lines. The Rosseland mean does and the Planck mean does not fall into this class. Because of
the emphasis on the continuum, where one has more reliable information, the Rosseland mean is expected to be more accurate.

The extent to which opacity errors falsify fireball calculations depends on the temperature range. Inspecting the temperature profiles of Fig. 2-2 which are typical for the early stage of a fireball one finds large temperatures near the center which makes the air in that region very transparent. Further out the temperature drops so that the opacity rises, goes through a maximum and then drops again. In the transparent central region radiative heat transfer is rapid and keeps that region at a fairly uniform temperature, as one sees in Fig. 2-2. Just how uniform this profile is has very little effect on the rate of expansion and therefore opacity errors by a factor twice or even more are not serious in that region.

The opaque zone around the central region acts as a radiative barrier and the development of the fireball does depend quite critically on the opacity there. During the very early phase where hydrodynamic motion is still negligible compared to the radiative expansion the section of the opacitytemperature relation near the maximum determines the rate of that expansion. It also determines when and where the hydrodynamic shock begins to form.

When shock temperatures are still high, the opaque shell forms in a temperature toe ahead of the shock. This is the precursor which has been sketched in Fig. 2-7 and which causes the early structure in Fig. 2-1. At this stage the opacity is still of interest, since it determines the character of the escaping radiation and other observable phenomena, but the rate at which the fireball expands is given by the shock speed which does not depend on the opacity in the toe.

The next phase starts when the shock temperature has dropped low enough that the shocked air becomes opaque. This is aided by the high density directly behind the shock which can be seen for example, in the density profiles of Fig. 2-3. Up to that time radiative transfer plays a major role in feeding energy to the expanding shock front. Now that source fades out and hydrodynamics takes over as the dominant mechanism for energy transfer. The details of the change depend quite critically on the opacity relation.

Upon further cooling the shock front becomes transparent again and the opaque shell recedes toward the center. This starts the long time interval during which the power vs. time curve of Fig. 2-1 goes through its minimum, rises back to the final maximum, and starts to drop again. The calculation of this phase also depends quite critically on the opacity. A test calculation made with an opacity twice the accepted value stretched the total duration of this phase by almost a factor of two with a corresponding reduction of the maximum power level to about half of what it was in the earlier calculation. Thus, errors in the opacity relation could lead to fairly severe discrepancies between fireball models at the time of the second maximum.

3.3 Radiation hydrodynamics codes

The purely hydrodynamic part of any code is probably as accurate as the equation of state that is being used except for the smearing out of the shock front introduced by the artificial viscosity method. The accuracy of radiative transfer calculations is less certain, unless one is justified in using the diffusion approximation. In that case the limiting factor is
probably the accuracy of the opacity. Difficulties do arise, however, at the front of an opaque shell. Consider, for example, two zones labeled a and b whose temperatures place them on the rising branch of the opacity curve as indicated in Fig. 3-1. As the heating wave progresses these points move up on the curve. The radiation escaping to the outside comes at first from zone a and passes without attenuation through zone b . As zone a climbshigher the radiation rises as T^{4} but when zone b becomes sufficiently opaque to take over the role of zone a the power output drops. This cycle is repeated when zone c and others after it climb into the position originally held by zone a. The result of this is a sequence of maxima and minima in the power versus time curve which has no physical reality. This spurious effect can be counteracted by using finer zone sizes but at the expense of increasing the running time which increases as the square of the number of subdivisions per zone. Actually this is not necessary, since test calculations show that the cruder zone divisions lead to the same average power and to the same rate of expansion as a very fine division. A related problem arises when the artificial viscosity routine introduces improper heating ahead of the shock front. Letting the point a in Fig. 3-1 represent the shocked zone and b and c the zones just ahead of the shock, this heating would make points b and c lie at too high temperatures. The calculated attenuation of the radiation from the shock is therefore larger than what it should really be and leads us to predict too low a brightness of the fireball. The reduced output has, however, practically no effect on the calculated motion of the fireball air because at that stage the amount of energy lost by radiation is still too small to influence the hydrodynamics.

Other errors may be introduced by the use of approximate integration routines such as the multiple ray or the two stream techniques which have been discussed in Chapter l. Given a set of experimental data one can, within limits, adjust the opacity temperature relation so that either model will reproduce these data. It is therefore not really possible to disentangle errors which may arise from the use of these models on the one hand, and from incorrect absorption coefficients on the other hand.

3.4 Deviations from LTE

As we have repeatedly stated, nearly all calculations assume the air to be always in LTE. There are, however, some equilibration processes which are decidedly slow on the time scale of nuclear fireballs. At somewhat elevated altitudes one finds for example, that the processes responsible for populating the vibrationally excited levels of O_{2} and N_{2} fall into this class. These processes are discussed under the heading "vibrational relaxation" in (4) section 6.1 In the case of O_{2}, populating the vibrational levels reduces the photon energy required for reaching the Schumann-Runge continuum below the 8.5 eV which it takes from the ground state. As long as these levels are not populated the actual absorption is therefore less than it would be in equilibrium. Similar considerations apply to the Birge-Hopfield transitions in N_{2}. In most codes these delays are just ignored. Hillendahl (see Appendix A) has attempted to account for them by means of a fairly crude model assumption.

Other deviations from LTE are caused by the slowness of chemical reactions at temperatures, say, below $6000^{\circ} \mathrm{K}$ (see (4) sections 6.9 and 7.5.) Among the molecules which can form in this temperature range is
NO_{2} which has a large absorption coefficient. The delay in forming this molecule when air is suddenly heated by a shock and the subsequent delay in removing it again when the air cools down can change the absorption significantly from the value at equilibrium conditions. If the temperature drop is rapid enough the NO_{2} concentration may stay for a long time at the high concentration corresponding to $3000^{\circ} \mathrm{K}$ even though the temperature has dropped below $2000^{\circ} \mathrm{K}$. In this situation one speaks of NO_{2} as being frozen in.

Non-equilibrium processes also occur at the debris air interface. It has been pointed out in (4) section 5.2 that this is very poorly understood. It is, in particular, quite uncertain what temperature the shocked air would reach and what X-ray spectrum would be emitted by that air.

The questions raised in this chapter clearly do not exhaust the subject of possible errors in the present state of the art. It is, in fact, quite likely that effects with more practical significance have been overlooked. Still, this enumeration should provide the reader with some guidance what he should watch.

FIG. 3-1 LOCATION OF 3 ADJACENT ZONES ON OPACITY CURVE

Appendix A. A Radiation-Hydrodynamics Code

A. 1 Introduction

In this appendix, a sample radiation-hydrodynamics code is presented which employs, with varying degrees of sophistication, much of the physics and basic data presented elsewhere in this volume.

In keeping with Chapter 2, this code describes the radiative and hydrodynamic properties of a sphere of hot air. Details of the weapon itself are not of interest in the present context, and rather crude generalizations have been used to represent the gross properties of the hardware.

The code is presented as a means of demonstrating some of the techniques of radiation-hydrodynamics, as described in Chapter l, the application of basic physical data, as described in Volume 2 , and as an illustration of the results discussed in Chapter 2. The code is not intended as a demonstration of the programming art and has not been polished-up for presentation here. A great deal of the program could be deleted were the program to be used only for present purposes. Much of the basic philosophy of this code has been presented in Chapter 1 and by Hillendahl (1964), and will not be repeated in detail.

The basic equations of the problem are the conservation equations of radiation-hydrodynamics for a one-dimensional spherical system which can be written in Lagrangian form as

$$
\left.\frac{\partial U}{\partial t}=-4 \pi R^{2} \frac{\partial(P+Q)}{\partial m} \quad \text { Conservation of momentum } \quad \text { (A. } 1\right)
$$

$$
\begin{align*}
& U=\frac{\partial R}{\partial t} \quad \text { Definition of velocity } \\
& V=4 \pi R^{2} \frac{\partial R}{\partial m} \\
& \left.\begin{array}{l}
Q=c \frac{\left(\rho_{0} \Delta R\right)^{2}}{V}\left[\frac{\partial V}{\partial t}\right]^{2} \text { on compression } \\
Q=0 \text { otherwise }
\end{array}\right\} \begin{array}{l}
\text { Definition of Artificial } \\
\text { Viscosity }
\end{array} \\
& \frac{\partial E}{\partial t}+(P+Q) \frac{\partial V}{\partial t}+4 \pi \frac{\partial\left(R^{2} \mathcal{F}\right)}{\partial m}=0 \quad \text { Conservation of energy } \\
& E=E(V, T) \tag{A.6}\\
& P=P(V, T) \tag{A.7}\\
& \mathcal{F} \text { is an integral functional of } V \text { and } T \tag{A.8}
\end{align*}
$$

where

```
U = local fluid velocity
t = time
R = radius
P = pressure
Q = artificial viscosity
m = mass
    c = an arbitrary constant near unity
    \rho
```

$\mathrm{V}=$ specific volume (reciprocal density)
$\mathcal{F}=$ radiative net flux at R
$E=$ internal energy

Quite generally, the mathematical formulation of the problem may be characterized as an initial value problem whose solution consists of a time-wise and mass-wise integration of a well defined set of hyperbolic partial differential and partial integro-differential equations.

The solution of these equations is carried out by numerical techniques in which values of the dependent variables are determined in terms of the two independent variables (the time and lagrangian zone mass) by means of finite difference equations which are used to represent Eqs. (A.l) - (A.8).

For purposes of numerical computation, the fireball configuration is represented by a series of concentric, contiguous, spherical mass shells. The mass of the $k^{\text {th }}$ zone is designated by $m_{k}\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$. Since the mass zones retain their identity throughout the time-wise development of the configuration, the zone index k and the time t (seconds) are convenient choices for the independent variables.

Integration of the set of 8 equations (Eqs. (A.1) - (A.8)) then determines the values of the 8 dependent variables as functions of k and t. $U(k, t)$ ($\mathrm{cm} \mathrm{sec}{ }^{-1}$) and $R(k, t)(c m)$ are used to specify the instantaneous values of the interface velocity and radius of the outer surface of the $k^{\text {th }}$ mass shell. $\mathcal{F}(k, t)$ (ergs $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$) is used to specify the instantaneous value of the net radiative flux at the outer boundary of the $k^{\text {th }}$ mass zone. $P(k, t)$ (dynes cm^{-2}), $Q(k, t)$ (dynes cm^{-2}), $V(k, t)\left(\mathrm{cm}^{3} \mathrm{gm}^{-1}\right), T(k, t)$ $\left({ }^{\circ} \mathrm{K}\right), E(k, t)$ (ergs gm^{-1}) are used to represent the instantaneous values of
the pressure, artificial viscous pressure, specific volume (reciprocal density), temperature and internal energy of the mass zone m_{k}.

In a purely hydrodynamic problem without radiative transfer, it is the standard practice to reckon the thermodynamic properties of a zone (i.e.: pressure, internal energy, density, temperature) as constant average values over each zone. These values are also considered to be the central values of these variables at the geometrical zone centers. Particle velocities are reckoned at the zone interfaces; the interface density and pressure gradient are formulated in terms of the values at the zone centers. The zoning mesh must be chosen fine enough so that the variation in properties from zone to zone is small enough to insure that these average values are meaningful.

In a problem which also includes radiative transfer, the above restrictions must also be met. Zone sizes in a problem including radiation will generally be smaller than the zone sizes required by hydrodynamics alone. The addition of radiative transfer to the problem will, in general, add further restrictions.

If the temperature is taken as constant across each zone, temperature discontinuities will occur at the zone interfaces. Radiative variables like T^{4} will have even greater discontinuities. More detailed examination indicates that the temperature and its spatial derivatives should be continuous at the zone interfaces. Thus, consistent with the expansion used in Eq. (2.5-9), the source function B is taken as linear between zone centers. Then the discontinuous spatial derivatives of the source function which occur at the zone centers do not appear in the formulation. In a more general formulation, a higher order polynomial could be used to
fit the source function through the zone centers, but numerical experience has indicated such a procedure resulted in only minor improvement in the computations.

The central zone temperature T is used as the average over the zone for purposes of computing average zone pressures, internal energies, and is used also in the \mathbf{Z}, A, and W computations (Eqs. (2.5-13) through (2.5-15)). This is done primarily for purposes of convenience, but can be at least partially justified. In regions of small temperature gradient, no problem occurs since the central and average zone temperatures are nearly identical. In regions of large temperature gradients, the "average value" of the temperature is poorly defined in terms of the rapidly varying radiative variables, and it is preferable to keep the problem well poised hydrodynamically.

The specific volume V is taken as having a linear variation across each zone. The values of V at the zone centers and zone interfaces are then uniquely defined and afford no further difficulty.

The Z, A, and W functions are then computed using the average zone temperature T and specific volume V. Use of the average specific volume is justified since these functions show a relatively weak density dependence: Neglecting the variations in temperature across the zone causes only relatively small errors in the high temperature inner fireball regions since these functions show only a weak dependence upon temperature. In the low temperature regions, the Z, A, and W functions vary about as the ninth power of the temperature. Even with extremely fine zoning, large temperature gradients occur across each zone, and the Z, A, and W functions would be ill defined in terms
of any average temperature no matter how the average be defined. But the emission from these low temperature regions is small compared to the emission from the high temperature regions further inside, and these layers act primarily as a selective absorber for radiation from larger optical depths. Hence the \mathbf{Z}^{t} function must be known with some accuracy, but small errors in the A function, originating because of the use of the average zone temperature, can be tolerated.

The Z^{+}function, however, has peculiar properties in the low temperature region which allow its values to be obtained with sufficient accuracy. As discussed in Chapter 8, the spectral absorption coefficient varies extremely rapidly with wavelength so that the spectrum is effective. y divided at some wavelength into absorbed and transmitted fractions. This transition wavelength, however, depends only weakly on the zone temperature, and hence the average zone temperature will again suffice.

It should always be born in mind that these numerical approximations all improve as the zone size is decreased and can, in principle be made accurate to any desired precision. In practice, however, the fineness of the zone mesh is limited by the cost of computation. Skill is thus required to accomplish a large computational program within a limited budget. One tries to test each situation for sensitivity to zone sizes and achieve a compromise between economy of computation and accurate representation of the physics.

For purposes of carrying out the integration procedure by numerical methods, the basic equations (Eqs. (A.1) - (A.8)) are replaced by a set of centered finite difference equations as follows. The notation and
centering can best be seen by reference to Fig. A-1.

$$
\begin{align*}
& \frac{U_{k}^{n+1 / 2}-U_{k}^{n-1 / 2}}{t^{n+1 / 2}-t^{n-1 / 2}}=\frac{-8 \pi\left(R_{k}^{n}\right)^{2}\left(P_{k+1 / 2}^{n}+Q_{k+1 / 2}^{n-1 / 2}-P_{k-1 / 2}^{n}-Q_{k-1 / 2}^{n-1 / 2}\right)}{m_{k}+m_{k+1}} \tag{A.9}\\
& R_{k}^{n+1}=R_{k}^{n}+U_{k}^{n+1 / 2}\left(t^{n+1}-t^{n}\right) \tag{A.10}\\
& v_{k-1 / 2}^{n+1}=\frac{4 \pi}{3 m_{k}}\left\{\left(R_{k}^{n+1}\right)^{3}-\left(R_{k-1}^{n+1}\right)^{3}\right\} \tag{A.11}\\
& \begin{aligned}
Q_{k-1 / 2}^{n+1} & =\left(\frac{c}{v_{k-1 / 2}^{n+1}+v_{k-1 / 2}^{n}}\right)\left(\frac{m_{k}}{4 \pi R_{k}^{n+1}{ }^{2}}\right)^{2}\left(\frac{v_{k-1 / 2}^{n+1}-v_{k-1 / 2}^{n}}{t^{n+1}-t^{n}}\right)^{2} \\
Q_{k-1 / 2}^{n+1} & =0 \quad \text { if } \quad v_{k-1 / 2}^{n+1}>v_{k-1 / 2}^{n}
\end{aligned} \tag{A.12}\\
& \frac{E_{k-1 / 2}^{n+1}-E_{k-1 / 2}^{n}}{t^{n+1}-t^{n}}+\left(\frac{P_{k-1 / 2}^{n+1}+P_{k-1 / 2}^{n}}{2}+Q_{k-1 / 2}^{n+1 / 2}\right)\left(\frac{v_{k-1 / 2}^{n+1}-v_{k-1 / 2}^{n}}{t^{n+1}-t^{n}}\right) \\
& +\frac{2 \pi}{m_{k}}\left\{\left(R_{k}^{n+1}\right)^{2} \mathcal{F}_{k}^{n+1}-\left(R_{k-1}^{n+1}\right)^{2} \mathcal{F}_{k-1}^{n+1}+\left(R_{k}^{n}\right)^{2} \mathcal{F}_{k}^{n}-\left(R_{k-1}^{n}\right)^{2} \mathcal{F}_{k-1}^{n}\right\}=0
\end{align*}
$$

(A. 13)

$$
\begin{align*}
& \mathrm{E}_{\mathrm{k}-1 / 2}^{\mathrm{n}+1}=\mathrm{E}\left(\mathrm{~V}_{\mathrm{k}-1 / 2}^{\mathrm{n}+1}, \mathrm{~T}_{\mathrm{k}-1 / 2}^{\mathrm{n}+1}\right) \tag{A.14}\\
& \mathrm{P}_{\mathrm{k}-1 / 2}^{\mathrm{n}+1}=\mathrm{P}\left(\mathrm{~V}_{\mathrm{k}-1 / 2}^{\mathrm{n}+1}, \mathrm{~T}_{\mathrm{k}-1 / 2}^{\mathrm{n}+1}\right) \tag{A.15}\\
& \mathcal{F}_{\mathrm{k}}^{\mathrm{n+1}}=\mathcal{F}_{\mathrm{k}}\left(\mathrm{~V}_{\mathrm{i}}^{\mathrm{n}+1}, T_{\mathrm{i}}^{\mathrm{n}+1}\right) \quad \mathrm{i}=1, \ldots \ldots \ldots . \mathrm{L} \tag{A.16}
\end{align*}
$$

Eq. (A.9) expresses the conservation of momentum and is centered over the grid point (n, k).

Eq. (A.10) simply expresses the definition of velocity and is centered over the grid point ($n+1 / 2, k$).

The conservation of mass, expressed by Eq. (A.11), is centered over the grid point $\left(n+1 / 2, k-1 / 2\right.$, i.e. over $Q_{k-1 / 2}^{n+1 / 2}$.

The difference expression (Eq. (A.12)) for the artificial viscosity is centered on the grid location ($\mathrm{n}+1 / 2, \mathrm{k}-1 / 2$) except for the $\mathrm{R}_{\mathrm{k}}^{\mathrm{n}+1}$ factor. The artificial viscosity is thus correctly centered for use in the energy Eq. (A.13), but lags a half time step behind in the equation of motion (Eq. (A.9).

The energy equation (Eq. (A.13)) is centered over the grid location ($n+1 / 2, k-1 / 2$) and constitutes an implicit expression to determine the local temperature $T_{k-1 / 2}^{n+1}$.

Eqs. (A.14) and (A.15) are equations of condition rather than finite difference equations, and express the equations of state for the fluid at the location $(\mathrm{n}+1, \mathrm{k}-1 / 2)$ in terms of $\mathrm{v}_{\mathrm{k}-1 / 2}^{\mathrm{n}+1}$ and $\mathrm{T}_{\mathrm{k}-1 / 2}^{\mathrm{n}+1}$.

Eq. (A.16), which is written above only in symbolic form, expresses that the local net flux $\mathcal{F}_{k}^{\mathrm{ntl}}$ i:; an instantaneous integral functional of the temperatures and densities of all of the L zones in the configuration. The set of Eqs. (A.9) - (A.16) thus constitutes a set of 8L equations in 8L unknowns.

The following set of 11 auxiliary equations are used to evaluate Eq. (A.16):

$$
\begin{align*}
& Z O_{k-1 / 2}^{n+1}=z O\left(v_{k-1 / 2}^{n+1}, T_{k-1 / 2}^{n+1}, T R_{k-1 / 2}^{n+1}, t^{n+1}\right) \tag{A.17}\\
& Z r_{k-1 / 2}^{n+1}=\operatorname{LI}\left(v_{k-1 / 2}^{n+1}, T_{k-1 / 2}^{n+1}, t^{n+1}\right) \tag{A.18}\\
& \lambda H_{k-1 / 2}^{n+1}=\lambda H\left(v_{k-1 / 2}^{n+1}, T_{k-1 / 2}^{n+1}, t^{n+1}\right) \tag{A.19}\\
& \Delta T_{k-1 / 2}^{n+1}=\left(R_{k}^{n+1}-R_{k}^{n-1}\right) / \lambda H_{k-1 / 2}^{n+1} \tag{A.20}\\
& A_{k}^{n+1}=\exp \left(-\Delta \tau_{k-1 / 2}^{n+1}\right) \tag{A.21}\\
& B C_{k-1 / 2}^{n+1}=\sigma\left(T_{k-1 / 2}^{n+1}\right) 4 \tag{A.22}
\end{align*}
$$

$$
\begin{align*}
& S_{k-1 / 2}^{n+1 / 2}=\frac{B C_{k-1 / 2}^{n+1}-B C_{k+1 / 2}^{n+1}}{\Delta \tau_{k-1 / 2}^{n+1}+\Delta \tau_{k+1 / 2}^{n+1}} \tag{A.23}\\
& W_{k-1 / 2}^{n+1}=1-A_{k-1 / 2}^{n+1}-A_{k-1 / 2}^{n+1} \Delta T_{k-1 / 2}^{n+1} \tag{A.24}\\
& B B_{k}^{n+1}=\frac{\sigma\left[\left(R_{k+1}^{n+1}-R_{k}^{n+1}\right)\left(T_{k-1 / 2}^{n+1}\right)^{4}+\left(R_{k}^{n+1}-R_{k-1}^{n+1}\right)\left(T_{k+1 / 2}^{n+1}\right)^{4}\right]}{\left(R_{k+1}^{n+1}-R_{k-1}^{n+1}\right)} \tag{A.2.5}\\
& F O_{k}^{n+1}=F O_{k-1}^{n+1}\left(\frac{R_{k-1}^{n+1}}{R_{k}^{n+1}}\right)^{2} Z \varphi_{k}^{n+1}+F I_{k}^{n+1}\left[1-\left(\frac{R_{k-1}^{n+1}}{R_{k}^{n+1}}\right)^{2}\right] Z I_{k}^{n+1} \tag{A.26}\\
& +\mathrm{B}_{\mathrm{k}}^{\mathrm{n}+1}\left(1-\mathrm{A}_{k}^{\mathrm{n}+1}\right)+2 \mathrm{~S}_{k}^{\mathrm{n}+1} W_{k}^{\mathrm{n}+1} \\
& F I_{k}^{n+1}=\operatorname{FI}_{k+1}^{n+1} 2 I_{k+1}^{n+1}+B B_{k}^{n+1}\left(1-A_{k+1}^{n+1}\right)-2 S_{k}^{n+1} W_{k+1}^{n+1} \tag{A.27}\\
& \mathcal{F}_{k}^{n+1}=\mathrm{FO}_{k}^{\mathrm{n}+1}-\mathrm{FI}_{\mathrm{k}}^{\mathrm{n}+1} \tag{A.28}
\end{align*}
$$

where $\sigma=5.67 \times 10^{-5}$ is the Stephan-Boltzmann constant, and $T R$ is the temperature used to specify the spectral character of the radiation incident upon the zone from regions of smaller radius.

The analytic expressions for Eqs. (A.18) and (A.19) are not given explicitly in the written text, but are available in the FIREBALL code listing which follows.

In carrying out the numerical integration scheme, it is assumed that the initial values of R, T, V, E, P, U, Q, and \mathcal{F} are known at the initial time t^{n} for all values of k. The difference equations (Eqs. (A.9) - (A.28)) are then used to determine values for these variables at $t^{n+1}=t^{n}+\Delta t$ for all values of k. The procedure is repeated as n is increased until the desired period of time has been covered by the integration.

The initial values of Q and U are chosen at t^{n} rather than $\mathrm{t}^{\mathrm{n}-1 / 2}$ in the above procedure, but little error is introduced since the initial values may be adjusted accordingly and the time step Δt may be chosen as very small on the initial cycle.

The actual input model consists of a set of R, U, T, and V values for each zone of the configuration. Initial values of Q, E, P, Q, and \mathcal{F} are then found by use of Eqs. (A.12), (A.14), (A.15), and (A.16) before starting the first time cycle.

The set of Eqs. (A.9) through (A.12) depend only on the localized properties of the fluid and they can be advanced explicitly in space and time, subject to the limitations on the time increments according to the Courant criterion (see Chapter 2) .

The set of Eqs. (A.13) through (A.28) must be solved simultaneously for all of the L zones in the configuration because of the linkage between distant zones caused by the radiative flux. Since the advanced values
$v_{k-1 / 2}^{n+1}$ of the specific volumes are known by advancing Eq. (A.ll) explicitly, a set of trial temperatures $T_{i-1 / 2}^{n+1}, i=1, \ldots \quad L$ are estimated, substituted into the Eqs. (A.13) - (A.28), and a NewtonRaphson iteration scheme is then used to adjust the estimated values of temperature until Eq. (A.13) is satisfied to a predetermined accuracy.

The iteration is carried out by numerical methods. The equation of state derivatives, at fixed V, are carried out by raising and lowering the temperature 2% from its trial value, e.g.:

$$
\begin{equation*}
\frac{\Delta E}{\Delta T}=\frac{E\left(V, \frac{1.02 T)-E(V, 0.98 T)}{1.02 T-0.98 T}\right.}{\text { T }} \tag{A.29}
\end{equation*}
$$

The derivatives of the radiative quantities are computed by a ripple zone technique in which the temperature of a single zone is raised 2%, the set of Eqs. (A.17) - (A.28) is evaluated and the desired derivatives formed, and the displaced temperature is then returned to its undisplaced value. This procedure is repeated for each zone in the configuration until all the desired derivatives are available. In practice, radiative derivatives for zones more than 2 zones distant are small, so that only a 5 zone set (f derivatives is carried. Neglect of the more distant derivatives does not constitute a neglect of radiative transfer between distant zones; their neglect only influences rate of convergence of the iteration procedure.

For a system of L zones, the iteration procedure then results in L linear algebraic equations in L unknown temperature increments, each equation consisting of a set of terms involving 5 of the unknowns. This array is then solved by direct elimination and back substitution. The temperature increments are then used to adjust the trial values of
temperature until all temperature increments for all zones are simultaneously less than 10% of their respective zone temperatures.

The FIREBALL code is written in a programming language called FORTRAN; the particular vintage is known as FORTRAN II, Version 2. The various types of FORTRAN currently in use differ from each other only in minor details. This particular version was selected primarily because it has been in use for a number of years, and has achieved a measure of stability and reliability not to be found in the more recent efforts of the computer industry.

The FORTRAN language little resembles the machine language coding of a decade ago, and its resemblance to ordinary algebra is so close that the average physicist or engineer can learn to read FORTRAN with a very minimum of effort. This allows one to communicate the solution of a complicated theoretical calculation to his fellow scientists in complete detail and complete scientific honesty.

Section A. 2 is devoted to a brief discussion of how to read FORTRAN and is designed for the scientist who is not familiar with this type of language. The remainder of Appendix A is devoted to the scientific aspects of the FIREBALL code and is intended to be independent of the language details. Readers not interested in great detail may thus skip over Section A. 2, while those interested in such detall will find this section helpful in reading the code itself which is listed in full. The four digit numbers which appear in parenthesis throughout this appendix, e.g. (0136), refer to serial numbers (line numbers) in the code listing.

A. 2 Reading FORTRAN

Variables and Constants

Algebraic variables are represented by symbols as in ordinary algebra and may take on values from about $\pm 1.7 \times 10^{-38}$ to $\pm 1.7 \times 10^{ \pm 38}$, and zero. Arithmetic is accurate to 8 significant figures.

Variable names must consist of 1 to 6 characters, the first of which must be a letter of the alphabet other than $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$, or N .

Examples: YIELD, X, A47, FI, DIVFAR

Integer Variables

Integers are used in subscripts, counting, indices, and sometimes in exponents. They are represented by symbols of 1 to 6 characters and must begin with $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$, or N .

Examples: N, J63, MCOUNT

Subscripts

Variables may have up to three subscripts, but no superscripts. The subscripts may be positive integers, but not zero.

Examples: $\mathrm{X}(\mathrm{K}+\mathrm{l}), \mathrm{Z}(\mathrm{J}, \mathrm{N}), \mathrm{BB}(\mathrm{I}, \mathrm{J}, \mathrm{K})$

Arithmetic Operations

The symbols for standard arithmetic operations are little different from those used in ordinary algebra:
$X+Y$ means add X and Y
X - Y means subtract Y from X
X * Y means multiply X by Y
X / Y means divide X by Y

Normal algebraic sign conventions are used. A double asterisk is used for exponentiation, i.e.:

$$
\begin{aligned}
& R * * 2 \text { means } R^{2} \\
& R \text { ** BETA means } R^{\beta} \\
& Q * * 0.5 \text { means } Q^{1 / 2}
\end{aligned}
$$

Operations are carried out in the preferential order of first exponentiation, then multiplication and division , and finally addition and subtraction. Equal Sign

The equal sign has a meaning slightly different from algebraic usage, e.g.:

$$
\text { XYIELD }=\text { XYIELD }+(A * * 2)-B
$$

means carry out the algebraic operations to the right of the equal sign and store the result of this computation as the new value of XYIELD . Note that the previous value of XYIELD is first used, then destroyed and replaced.

Parenthesis

Parenthesis may be used to group information, indicate subscripts, or indicate the argument of a function.

Examples:
$(A+B) * C$ means add A and B, then multiply by C
$\mathrm{X}(\mathrm{K}+\mathrm{l})$ means Kt l is a subscript of the variable X
$\operatorname{SINF}(\mathrm{X})$ means X is the argument of the sine function

Usually parenthesis will be used for grouping; subscripts can be recognized because they are integers, i.e., I, J, K, etc.: functions can usually be recognized by the letter F and the lack of an arithmetic operation symbol.

Library Functions

Certain library functions may be called in by name in order to save programming labor.

Examples:

$$
\begin{aligned}
& \operatorname{EXPF}(X)=e^{X} \\
& \operatorname{SQRTF}(Y)=\sqrt{Y} \\
& \operatorname{LOGF}(Z)=\log _{e} Z
\end{aligned}
$$

Program Flow

Statements are processed by the computer in order of occurrence unless other directions are provided. Formula numbers, which occur in the first 5 spaces to the left, are not required unless control is to be
switched to that particular formula. The most common control commands are:

GO TO 436
$\operatorname{IF}(X(K)-3.0) 450,500,750$
sends control to statement 4.36
tells the computer to test the sign of the expression in parenthesis ($\mathrm{X}-3$) and to transfer control to statement 450 if negative, 500 if zero, 750 if positive.

The IF statement provides the only means by which the computer makes judgments.

Subroutines

Complete subprograms, designed to accomplish a particular set of computations many times, can be used. For example:

CALL STATE
appearing in a program will send the computer to subroutine STATE, the set of computations indicated in that subroutine will be carried out, and control will return to the main program at the statement following CALL STATE.

Repetitive Operations

To save labor in programming, the DO statement may be used:

```
DO 100 K=1,95
```

instructs the computer to carry out all instructions following this statement until statement 100 is reached. Do this first with K equal to l ; repeat this process, increasing K by unity each time, making the final pass wi th K equal to 95.

This statement can be used to compute repetitive formulae, or it can be used to select values from an array of numbers. For example:

TESTV $=1.6 \mathrm{E}+02 \quad$ means set TESTV $=1.6 \times 10^{2}$
DO $50 K=1,100$
$\operatorname{IF}(\mathrm{X}(\mathrm{K})-\mathrm{TESTV}) \quad 50,50,10$
10 XCRIT $=X(K)$
$N=K$
GO TO 70
50 CONTI NUE
XCRIT $=0.0$
70
YSTART $=$ XCRIT + DELTAY
sets XCRIT equal to $X(K)$ retain the value of K as the symbol N exit from the DO statement. a dummy statement set XCRI T to zero the next step in the computation
selects the first X value that is greater than 160 out of a list of 100 values of X, starting at $X(1), \ldots . . . X(100)$. If no such value is found, then XCRIT is set equal to zero.

The above material has been brief and oversimplified, but should enable those unfamiliar with FORTRAN to decipher formulae from a program listing and to follow the scheme of computation. Additional help can usually be obtained from programmers if additional questions of interpretation should arise. Books on FORTRAN are available, but none are recommended.

A. 3 The computational scheme

The general computational scheme is cyclic in nature, each completed cycle representing an advance in the time variable.

The method of computation is illustrated in the schematic flow chart, Fig. A-2. Each block in this illustration represents a principal feature of the computation; numbers in the upper left corner of each block refer to a line number to the far-right of each page in the code listing.

The computation begins by reading in an initial configuration from data cards. The configuration consists essentially of the initial density, temperature, velocity, and dimensions of each of the 100 zones in the model. The data cards may represent an initial configuration, or the data might represent the results of a previous computer run on a model that is being done in short segments.

If the entry is a restart rather than an initial start, a dummy subrcutine rejust (0693) is provided to make minor changes in program control parameters without the need for recomplling the major subroutines.

After reading in the initial configuration, the data is tested for obvious errors (0367), the equation of state subroutine (0387), the radiative properties subroutine (0389), and finally the flux subroutine (0410) are used to complete the details of the initial configuration. The computation cycle proper is then initiated (0402-0405). The initial time, which has been modified (0404), is now restored to its proper value (0123).

A sequence is then used to determine the number of zones, out of the possible 100, that are to be used at the present stage of the computation. (0124-0138). The number of zones in use is continuously adjusted during the computation to avoid unnecessary computation. When the data is loaded,
zone 100 must have the ambient temperature and density ar burst aititude. The code then probes inward to a point where the temperature is twice the ambient value or the particle velocity reaches 1 m per second. Tho number of zones in use is then arrived at by adding a 6 zone safety factor to the result of the above selection.

The next sequence (0139-0162) selects the times at which the data print-out routine (0833) is called, selects the magnetic tapes to be used for the data, and sets up the necessary parameters to integrate the total energy lost by radiation between two data printouts, and to find the radiant power by differentiation of the energy vs time. The data print-out routine will be described in detail in Section A. 4. The data printout routines are one-way streets so far as the main stream of the computation is concerned. Data is siphoned off, but no feed back into the computation proper occurs.

The sequence (0164-0177) provides an emergency data saving mechanism for use in case the computation becomes numerically unstable. In order to provide an economical computation, the time step used must be just below the critical value prescribed by the various criteria which will be described in the hydrodynamic routine (0360). These criteria are not fool-proof, and should the computation become numerically unstable (or should the computer operator err), the already completed computation might be lost unless there were a mechanism for restarting. Once the calculation has become unstable, the data presently in the computor may be invalid. The present sequence writes the fireball configuration on a magnetic tape at the completion of each 50 code cycles. Each time another 50 cycles are completed, the tape is rewound and the next configuration
written. Finally, at the end of the run, the last configuration remains on the tape, is read into the computer (0305), and data cards are punched (0312). Should this data card punching process fail, the tape itself is saved and the cards can then be punched directly. At the time of termination due to any type of error, data cards are then available not more than 50 cycles back. On occasion, an instability may occur just after a configuration has been written in the tape, in which case the computation is lost. But this has a probability of occurrence of about 1 chance in 50 .

The next two sequences (0179-0257) select the rezoning subroutine (0179) and the zone splitting subroutine (0225). These sequences will be discussed below in Section A. 5 dealing with these subroutines. In principle, one tries to remove fine zoning where it is not needed, and to create fine zoning when the physics of the problem so demands. Use of fine zoning throughout is not feasible because of the increased computational costs and also because the computer can only accommodate a total of 100 zones at one time. If the finest zoning in the problem were used throughout, the entire fireball could not be accommodated. So far as is known, other codes (Brode and Whittaker, private communications, 1965) currently in use are rezoned manually by visual inspection. The present sequences are an attempt to carry out this process automatically during the computation.

The sequence (0259-0264) provides for the printing of detailed diagnostics at the initial cycle, the next cycle following, and at one selected by data card input. The diagnostic routine (1125) is called for this purpose.

A termination sequence is provided (0266-0342) which is used whenever the computation is terminated, except in those cases where the normal course of the computation is interupted by a machine difficulty or an operator error. The termination sequence provides for a final data printout (0274), the printing of program diagnostics (0273), the punching of current data cards (0275-0282) for possible restart purposes, completes, copies combines, and unloads various tapes (0283-0326), and punches data cards containing the configurations from 1 to 50 cycles prior to the termination (0303-0319), before completing the run (0343).

The series (0123) through (0345) has dealt primarily with control mechanisms, rather than the actual computation, which is resumed at (0346). In the course of the computation it is necessary to carry most of the program variables for all mass zones, but only for the current point in time. A few of the variables must be carried for all space zones, but for two consecutive points in time. For example, the present value of the specific volume for zone K is represented by the symbol $V(K)$, while the specific volume from one time-step in arrears, the retarded value, is represented by $\operatorname{VR}(\mathrm{K})$. As the program cycles, the present value becomes the new retarded value, and a new "present" value is computed.

The shifting process, in which the retarded values are set equal to the present values, takes place in the next sequence of commands (0346-0356). Also in this sequence, the present values of the variables are independenily saved under the symbol $W(K, I)$ for possible use in the event that the entire cycle requires restarting. The restarting procedure is discussed at the end of this section.

Following retardation of the variables, a hydrodynamics routine (0360) is called, which will be described in detail in Section A.6. This routine advances the velocities, radii, specific volumes, and artificial viscosities.

One of the more important steps in the program is accomplished by a single dummy statement (0364). The first step in solution of the energy equation (Eq. (A.13)), is the estimation of a new trial temperature for each zone. Skillful selection of the trial values will make the iteration process converge faster and thus speed up the computation. However, in an iteration process the equation being solved is never satisfied identicaliy, and any prejudice used in estimating the new temperatures may tend to impose non-random errors in the final results. For this reason, the old values of temperature are used as the first estimates for the new values. The iteration scheme itself then, in a sense, becomes a basic part of the system of equations. As will be discussed later, the iteration scheme used employs the same set of equations as are used to represent the energy equation itself. This procedure should tend to minimize any bias.

The iteration cycle proper (0365) begins by testing the set of temperatures for negative or zero values. Such values are likely to occur in the event of a numerical instability, in which case the computation is immediately terminated through the sequence previously described.

In the next sequence (0371-0387) the equation of state subroutine (1217) is called on three successive occasions. This subroutine is discussed in Section A.7. At this point in the computation, the advanced values of the specific volume are known for each zone. A trial set of temperatures has been selected. The derivatives of the internal energy and pressure,
with respect to temperature, at constant specific volume, are formed by first increasing the temperatures 2% above the trial values, passing through the equation of state to obtain ϵ nergies and pressures, then repeating the process after lowering the temperatures 2% below the trial values. The required derivatives are then formed numerically from the above data (0384-0385).

The temperatures are then returned to the original trial values and a final pass through the equation of state is made to obtain trial values of the internal energy and pressure (0387).

Two subroutines are then called to provide the necessary radiative flux divergences for use in the energy equation. Subroutine SWABZ (0490) uses the values of V, T, and the dimensions of the zones to compute values of the SWAB and Z functions and is discussed in Section A.8. These values are used in subroutine FLUXS (1183) to compute fluxes and flux divergences as described in Section A.9.

A temperature test occurs next in the computation, but is bypassed on the initial trial of the energy equation.

The energy equation itself is then evaluated (0415-0424). A residue, comprising the imbalance of the energy equation due to the use of trial temperatures, is computed for each zone (0422).

The temperature iteration of the energy equation then commences, (0425). Two types of iteration schemes can be selected. If the configuration is entirely optically thin (i.e. the total optical depth from the outer edge to the center is less than a given value) a non-radiative iteration (0429) can be used. Radiative transport is still included in the energy balance, but explicit radiative derivatives do not appear in the iteration scheme. If this alternative is selected, the temperature increments for each zone are
computed immediately (0431).
When radiation is included in the iteration (0439), the radiative and hydrodynamic derivatives are carried only in the inner zones, while only hydrodynamic derivatives are carried in the outer zones.

In the radiative iteration procedure, subroutine COEFF (1395) is called to form the required coefficients for the solution (0447) for the temperature increments. This sibroutine is described in Section A. 10.

Once the full set of proposed temperature increments is known, they are tested (0457) to see if they are within arbitrary bounds which have been developed by experience. Should these bounds be exceeded, there is a high probability that the time increment used by the computer was too large. Program diagnostics are then printed, the variables are restored to their values at the beginning of the cycle, and the cycle is repeated using a smaller time increment. This recycling is allowed 3 times, after which the computation proceeds even though the test bounds were violated. If the test criteria were correct, a numerical instability results, and the computation is terminated from one of the several points in the program where the instability can be positively detected. An instability does not always occur, however, since the tests are not infallible.

Usually a recycling occurs when a time increment just slightly too large has been used and a single recycle cures the difficulty. Use of this stability check "after the fact" enables the various time step selection criterla to be pushed close to their limits. Use of large safety factors in these criteria, as is the common practice, would be prohibitive as the total computation time would be seriously increased. If the proposed temperature increments satisfy the stability tests, they are accepted and
the trial temperatures are modified accordingly (0485).
These new temperatures become a new set of trial temperatures and the iteration cycle is begun again (0367). The iteration convergence test (0409) is made well into the second and subsequent passes through the iteration sequence. Should the test be satisfied, then the best values of internal energy, pressure, and fluxes, etc., are available as the cycle is completed. If the test is f alled, the iteration cycle then progresses with all the necessary data. The code as written performs some unnecessary computations in that the state derivatives are computed but not used if the convergence test is satisfied. This technique was a compromise between several alternatives and was adopted because it required less computer storage at a period when the program was storage limited.

The actual convergence test used (0408) consisted of the requirement that the temperature increments for all zones be simultaneously less than 10% of their respective zone temperatures. This method proved to be more efficient than several other methods tried which were based directly on the degree of imbalance of the energy equation.

The number of passes through the iteration sequence is limited to 3 on any one code cycle (0416). It is a characteristic of the Newton method that convergence takes place very rapidly or not at all, and that on odd number of attempts is usually better than an even number. Should an abnormally large temperature Increment occur after 3 iterations, a convergence check at the beginning of subroutine HYDRO detects this and forces a smaller time step on the following cycle. This test differs from the main program stability check in that it is applied only after 3 full iterations and uses stricter criteria.

A. 4 Data printout routines

The data printout sequence is contained in subroutine CGSPO (0833), This routine samples the data from the computation proper, generates additional parameters of interest from this information, and produces twc. magnetic tapes: the main listing and the user tape.

The general problem of determining observables from a list of temperature and density values is a difficult one. Many of the "observable" parameters generated by the printout routine are extremely crude and must be used with extreme caution. These "observables" have been printed below the main tables of data and include the shock radius, fireball radius, effective temperature, color temperature, and the spectral distributions. For example, the code defines the fireball radius (FBR) as the radius at which the optical depth is 0.44 as measured from outside the fireball. This simple definition is easy to code and is useful radius to have printed out. But for comparison with an experimental radius measured photographically, a complete brightness profile is required for comparison with the corresponding densitometer traces from the experiment.

The routine begins by testing for temperature inversions (0864) and causes program diagnostics to be printed if such inversions are found. Placement of this test in the printout routine causes the diagnostics to coincide in time with the data printout so that any unusual features seen in the listings may be studied in detall.

In the sequence (0868-0874) a number of variables to be printed out are set up. This sequence works in conjunction with the sequence (01390162) in the main program. The variable CN(LZ) is the average time step between two succesalve printouts. The variable SAVEl is the value of the last time step before the printout. The total power being radiated
in watts (POWER), the color temperature (TCOL), and the effective temperature (TEFF) all depend upon the value of the total flux (TFLUX) which is the power being radiated in ergs. TFLUX is computed in the main program (0155). The instantaneous total flux at the end of each cycle is called FLOX and is summed continuously (0139) throughout the computation and called FLEX. The average power TFLUX over the time interval between printouts is obtained by numerical differentiation of FLEX (0155). This method gives more representative results for the power output since the instantaneous power tends to fluctuate due to the finite zoning of the model. The instantaneous total power corresponding to the time of a given printout can easily be obtained since the radius and outward flux at the last zone are available from the printout.

The code definition of the effective temperature (TEFF) is defined (0874) from

$$
T \text { TFLUX }=4 \pi(F B R)^{2} \sigma(T E F F)^{4}
$$

where $\sigma=5.67 \times 10^{-5}=$ Stephan's Constant.

It is the temperature of a black body radiation having the same size as the fireball and which emits the same total power. This temperature is a minimum estimate of the fireball "surface" temperature sin ce the fireball does not have an emissivity of unity.

The code definition of (0873) color temperature (TCOL) uses an estimate of the total emissivity and yields a higher temperature which can be used to describe the spectral character of the radiation escaping from the fireball. The emissivity estimate is based on the Z^{+}function
for the zone having the largest λ_{C} and the radiation temperature for that same zone (0689).

After the fireball becomes transparent in the continuum, the effective and color temperatures are no longer defined since their definitions involve the fireball radius, and by the code's definition, $F B R=0$ under these circumstances.

At this point (0875), the printout routine calls subroutine PHOTOG (1061). This routine computes an estimate of the photographic brightness as a function of radius. Using an approximate fit (1073) to the absorption coefficient for the "photographic" region of the spectrum, and a Planck function (1083), the emitted intensity is calculated for chord rays which are tangent to the mid-point of each mass zone. Since the spectral band width of the photographic region is unspecified, only relative brightness values are obtained. The brightness scale, however, remains fixed throughout the entire computation. It is clear that only an estimate can be obtained from this computation since the absorption coefficient is not independent of wavelength across the photographic region of the spectrum, and also because the appropriate absorption coefficient data are not available at temperatures above 20 eV . The data is useful, however, in making comparisons with experamental results and in finding the gross brightness variations across the fireball.

The CGSPO routine next makes an estimate of the spectral distribution of the total radiation emitted by the fireball. The code decides (0877) whether the fireball is optically thick or is transparent. If the fireball is transparent (0878), no realistic estimate of the spectral distribution can be made since the spectrum consists of emission lines and a weak
continuum. An extremely crude estimate of the "visible power" (4000-7000 \AA) can be made by noting that fireballs tend to form an isothermal region at these late times. Most of the emitted radiation must come from this isothermal region since it is the hottest part of the fireball. These isothermal region temperatures range from $9500^{\circ} \mathrm{K}$ down to $5000^{\circ} \mathrm{K}$ as the transparent fireball cools. If it is assumed that the envelope of the emitted spectrum crudely approximates a Planckian distribution, then $37 \pm 3 \%$ of the radiation will fall in the "visible" region of the spectrum over this entire range of temperatures. Hence, for the transparent case, the visible power (P 47) is taken as 37% of the total power (0878).

If the fireball is optically thick (0888), then the color temperature is used as a basis for division of the total power into broad spectral bands (0889-0939). The formula for the Z^{\dagger} function, which very nearly approximates the fractional Planck function in the visible and IR spectrum, was used in place of an accurate fit to $\int_{\lambda}^{\infty} \mathrm{B}_{\lambda} \mathrm{d} \lambda$ as an analytic fit to this integral was not know to be readily available. The accuracy so achieved is probably better than the physics of the spectral estimation process. The overall results are of a quality comparable to those achieved by assuming the sun to be a $6000^{\circ} \mathrm{K}$ black body.

The next sequence (0944-0963) performs an energy check by summing the internal and kinetic energy of the current configuration. The sequence computes the internal energy and the kinetic energy zone by zone, and also the internal energy of the volume of space currently occupied by the configuration if there had been no detonation. This "ambient" energy of
the undisturbed air constitutes a significant part of the total energy of the configuration, particularly at late times when the radius of the configuration is large. It must be taken into account in studying the energetics of the model.

The code has no built-in method of forcing energy conservation. The energy check sequence is simply an after-the-fact sampling to see if energy has been conserved. If the difference equations do in fact represent the basic conservation equations, then mass, energy, and momentum will automatically be conserved.

The energy accounting at any one moment can be verified by adding the present model energy due to the detonation and the thermal losses up to the given moment. The quantities TOT ES, EAMB and TYIELD are printed out and are the appropriate numbers to use for this purpose. TOT ES in the printout is the total energy, (DPP(LZ) in the code (0959),) and includes EAMB, the energy content of the cold air before the detonation. TYIELD in the printout. (FLEX in the code (0139).) is the total energy radiated outward across the outer boundary of the model from the time of detonation up to the present time. In general, the code conserves energy to within a fraction of 1%.

Sandwiched in the energy check routine are some operations which concern the printing out of shock parameters. (0955-0958). It should be remarked that the location of shock fronts in a numerical configuration is a difficult problem because of the varying number of shocks and the wide range in their characteristics. Many methods were tried, but with limited success. Shocks are best located by a careful study of density vs. radius
and velocity vs. radius graphs,
The location of a strong shock is determined by the program by finding the largest value of the artificial viscous pressure, with the added requirement that it be larger than the ambient gas pressure at burst altitude. This shock radius is printed, but cannot be relied upon without further inspection to se if a shock really exists at that radius. This simple technique will print out the location of one shock, but it may not select the same shock on consecutive printouts.

The sequence (0978-0991) simply changes units and sets up certain quantities in proper form for priating them out. For example, (0987) computes the effective value of "gamma," while (0984) yields the temperature in electron volts.

The sequence (1001-1016) prints out the main listing, while the sequence (1022-1029) prints out the user magnetic tape for use in continuation computations such as fireball environmental studies.

A. 5 Varlation of the number of zones in use

It has been said that there are three major problems to be solved in writing a fireball code: the basic physics, the interpretation of the results, and the use of proper zoning. Proper zoning is by far the most difficult of these problems. One simply cannot use a fine mesh throughout the configuration as the computing time increases approximately as the square of the number of zones, i.e. halving a zone halves the time step and doubles the number of computer operations, thereby requiring four times as much computer time.

In the other extreme, if the model is represented by zones of equal size, some of the zones may be too large to properly represent the gradients in physical properties.

Consider, for example, a model where the fireball has a radius of $10^{3} \mathrm{~cm}$ and may require zones of width $10^{-1} \mathrm{~cm}$ at the fireball boundary. Since the computer can accommodate only about 100 zones at a time, the zone obviously cannot be of equal size. Furthermore, use of a $10^{-1} \mathrm{~cm}$ zone in the hot isothermal region would slow the computation by at least a factor of a hundred, and perhaps a factor of ten thousand or more.

Ideally, new zones should be created and old zones combined in an optimum manner based on the local physical conditions at each point in the configuration. The subroutines SPLIT (0785) and REZONE (0701) are provided for these purposes.

In the split subroutine, the zone indices for the zones exterior to the zone to be split are first shifted outward (0789-0808) to make room for the new zone.

The zone is then split in half mass-wise (0810-0811). The particle velocity at the new interface is taken as the square root of the average of the squares of the particles velocity at the boundaries of the original zone. The temperature of the two new zones are displaced 10% above and below the temperature of the original zone, (0824-0825) and a similar treatment is accorded the internal energies (0826-0827).

This routine must be considered as only a crude beginning and much work is still being done in developing new techniques. The present routine can only be used before the gradients become large, and even then its use should be discouraged.

The calling sequence fer the SPLIT subroutine occurs in the main program (0225-0257). Statements (0228 and 0248) prevent a split more often than each third cycle. Statement (0231) requires a split at any time that a single zone represents more than 8% of the radius of the entire configuration.

The real purpose of zone splitting is to provide very fine zones just ahead of an advancing shock front so that the optical properties will not be too severely distorted. The sequence (0232-0244) attempts to achieve this goal. Optical depth 0.7 from the outside is located (0232) and this zone is tested to see if it is being compressed (0235). Then if the particle velocity is greater than $10^{5} \mathrm{~cm} / \mathrm{sec}$ as is characteristic of optically thick shocks, the five zones immediately exterior are scanned and one per cycle can be split, until a certain minimum zone size is reached. Once the shock has started, the splitting takes place 5 zones ahead of the shock until the shock becomes transparent. The minimum zone size has not yet been formulated in general terms, and must be re-programmed in for eac. separate run. In the program listing (0240) a zone of 200 cm or more can be split, resulting in a minimum zone size of 100 cm . This is about appropriate for a megaton burst at sea level.

As a final insurance against undesirable zone splitting at high altitudes, statement (0244) prevents splitting at temperatures above $6 \times 10^{4}{ }^{\circ} \mathrm{K}$.

Subroutine REZONE (0701), which combines two existing zones is on a much more sound basis. Conservation of mass in the zone combining process is trivial (0735), but the conservation of energy and momentum are slightly more complicated. The internal energy of the new zone is taken
as a mass weighted average of the internal energies of the two zones being combined (0733). The conservatism of kinetic energy and momentum for a four zone system (0709-0712), which is collapsed into a 3 zone system, results in two equations for the two unknown particle velocities at the inner and outer edges of the combined zone.

The remainder of the subroutine REZONE consists of a shifting of Indices for zones exterior to the fusion, and the addition of a new zone 100 at the outer edge of the configuration.

While this routine works well and quite accurately, some skill is required (but not always attained) in deciding when rezoning should take place.

The calling sequence for rezoning is in the main program (0179-0224). On the basis of optical properties (0182), the outer limit of the region to be scanned (the index NZ TS) and an allowable mass ratio for neighboring zones (PMT) are selected (0181-0202). If at least two cycles have passed since the last rezone (0204), zones 9 through NZTS are tested for size compared to the size of the entire configuration (0205), temperature gradient (0206), density gradient (0207), and mass gradient (0208). If these gradients are less than the allowable artitrary limits, then rezoning is allowed so long as the zone is not undergoing significant compression (0209).

A. 6 Hydrodynamics routine

The hydrodynamics routine (1261) is patterned after the artificial viscosity method of treating shocks (see Chapter 2). In addition to advanaing four of the basic equations, this routine also controls the size of the time increments and performs miscellaneous other functions.

At the beginning of the routine, the previous temperature increment is tested (1273) against the temperature, and if the increment is too large. the proposed time step is cut a factor of five (1277). This test serves several purposes depending upon the values of the previous temperature increment that may be stored in the computer at the moment. If a maincycle has been completed satisfactorily, i.e. all temperature increments are less than 10% of their respective temperatures, then no decrease in estimated time step takes place. If, however, a main cycle was completed after three passes of the energy equation, the 10% requirement may not have been satisfied, i.e., the iteration may not have converged. Should this be the case, then the time step is shortened in the hope that a numerical instability can be-avoided.

If the main program stability check (0457) is violated, the program returns to the beginning of that master cycle after restoring all data except the temperature increments. Then, since the HYDRO tests are slightly more demanding than are the main program tests, the time step will also be decreased when the main program senses a difficulty.

The equation of motion sequence is carried out in two separate phases which are separated by criteria to choose a new time increment. The particle velocities are first advanced using the previous value of the time step (1289) so that proper time centering of the difference equation (Eq. A.9)) is maintained.

A new time increment is then selected (1298-1335). First a time step 30% larger is suggested (1299). This value is then reduced should the Courant criterion, Eq. (2.5-4), demand that a smaller value be used
(1302-1310). The time may be further reduced by a radiative criterion (1314-1326). Gross checks are then imposed, as a safety factor, which demand that the new time step can never exceed the previous one by more than a factor of two, or be less than a given minimum value (DTMIN). The value of DTMIN is continually increased during the computation and is kept a factor of 50 smaller than the largest time step that has been used. Should the speed of computation decrease more than this factor of 50 , too large a time step (the value of DTMIN) is forced into use and the computation may become unstable and turn itself off. This feature prevents the waste of computer time should the time step conditions become abnormally critical at some point in the configuration.

Superimposed on these criteria is the mechanism for causing data to be printed out exactly at fixed predetermined times (1333-1335). This criterion may further decrease the time step.

After a new time step has been decided upon, new values of the particle velocity are determined by linear interpolation (or extrapolation) so that proper time centering of the equation of motion is maintained (1337).

The radii (1344) and specific volumes (1362) are then advanced in a straightforward manner. The new radii are tested before adoption (1348) to prevent sudden zone collapse should the estimated hydrodynamic time step be too large. A local recycle with decreased time step is then instituted (1358).

It is perhaps appropriate to again mention that the use of large safety factors in the time step criteria result in the use of large amounts of computer time. Considerable economy is achieved by lowering the safety factors, testing the proposed results before closing a cycle,
and re-cycling when necessary, Using this technique and with a little experience, the code can be kept running at near optimum speed.

The sequence (1372-1385) advances the artificial viscous pressure. A variety of formulae are available in the literature for this purpose. The formulae used here is similar to that given by Richtmyer (see Chapter 8 references). This form appears to give better results when shocks reflect at the center of the sphere than do the "linear" and "quadratic" forms. In the final analysis, the use of an artificial viscosity is an art and an adjustable constant (1374) is available to achieve optimum results for any specific situation. Use of too small a constant causes numerical ripples behind the shock, while use of too large a value spreads the shock-over too large a distance and lowers the shock velocity. According to Richtmyer, choice of the arbitrary constant in a manner so as to spread the shock discontinuity over 3-4 zones results in shock velocities and pressures that agree well with laboratory experiments.

The use of an artificial viscosity causes a ficticious precursor ahead of the shock front. If this precursor is optically thick, the shock radiation rate will be affected. This effect reduces the rate of radiation loss when the shock temperature is large, but numerical testing has shown that it has little effect on the shock energetics.

A. 7 Equation of state routine

The equation of state subroutine (1217) is entered with known values of the temperatures and specific volumes for each zone, and values of pressure and interval energy are computed.

The source data for the analytic fit to equation of state are primarily due to Gilmore (1955) and to Hilsenrath and Beckett (1955). This polynomial type of fit, though in principle not as accurate as an iterative routine, is preferred for computational purposes because the derivatives are well behaved. This fit is also self consistent in that the hugoniots are closely satisfied, while some of the piece-wise fits, that are accurate over limited ranges, fail in this regard. No significant inaccuracies are known to have resulted from use of this simple expression.

There is some question as to whether radiation pressure and the radiation energy density should be included in the equations of state (see Chapter 2). The subroutine STATE allows an explicit choice to be made in this regard (1222-3). These effects can only be important at high temperatures. The argument against including these effects is that at the high temperatures the matter and the radiation cannot be in equilibrium according to the local high temperature since the gas is too transparent. The radiation field is characteristic of the lower temperatures where the opacity is higher. To base the radiation pressure on the higher values of temperatures in the interior would thus be an overestimate.

A. 8 Radiative properties routine

The radiative properties of the fluid, which are characterized by the S, W, A, and Z functions, Eqs. (A.17) through (A.25), are supplied by subroutine SWABZ (0492-0692). The analytic representations of the Z^{-} and \mathbf{A} functions, which differ only in that the electron scattering is omitted in the A function, are formulated in terms of λ_{H}, a radiative mean free path which depends upon the zone temperature, zone specific volume, and the time.

The Z^{-}function (ZI in the code) is formulated directly as a transmission (0500-0507). * The A function cannot be formulated directly in this fashion since $\ln \boldsymbol{A}$ is needed to define optical distance, and truncation errors would occur as $A-1.0$. Thus λH^{\prime} (HMFP in the code, is found (0508-0511), together with a separate high temperature emission term (0512) due to Bremsstrahlung (HMFF in the code). The smaller of these two mean free paths is used for temperatures above 10 eV (0514).

The emission optical depth (0516) then follows immediately from the zone thickness. The A function (0517) at this point in the code is identical with the definitions used in Eqs. (A.21) and (2.5-14). A later sequence (0670-0675) redefines A as (1-A) (an emissivity) as a computational convenience for zones of small emissivity.

The variables $B C$ and $B B 91518$ and 0526) are used to represent the source function at the zone centers and zone boundaries respectively. It will be noted that the boundary value is determined by linear interpolatior of the source function in terms of geometrical rather than optical distance. The two methods yield substantially the same results when the two neighboring zones have comparable optical thicknesses, but the geometrical method gives better values when an optically thick zone occurs next to an optically thin zone. The terms involving the boundary values cancel if both zones are optically thick, while the source function gradient is small for two transparent zones; so that the method of interpolation is not important in these cases.

The sequence (0536-0563) computes the optical depth inward from

[^5]the outer boundary of the configuration and sets various control variables used by the program at other locations. The index LZR specifies the last zone to be included in the radiative part of the iteration scheme. The fireball radius, $F B R$, is set as the outer radius of the zone in which the total optical depth as measured from the outside has reached 0.44. Choice of this value has no particular significance. For high air densities the optical depth increases abruptly so that any reasonable test value will result in choosing of the same zone to specify the radius. For rarefied atmospheres, considerable limb darkening takes place and chord integrations would be necessary to find a precise radus. The test value of 0.44 has been found to yleld radil satisfactory for the intended applications elsewhere in the code. The index MCP is used to specify the zone in which optical depth unity occurs as measured along the representative ray. (This corresponds to a radial optical depth of $2 / 3$).

The sequence (0564-0607) computes the wavelength at which the principal spectral absorption edge occurs for each zone. This wavelengtr, depends only upon the physical characteristics of each zone, i.e., its temperature, density, and zone thickness. Zones are first sorted according to temperature to determine whether the spectral transition is due to an atomic species, the nitrogen molecule, or the oxygen molecule.

The transition edges due to atomic species are in the far ultraviolet and a fit will be required only at very high altitudes when the fireball is transparent throughout while the temperatures are high enough so that the Planck function is significant in the ultraviolet. This fit used by the code is therefore very limited in its application.

The nitrogen and oxygen molecular formulations involve a continuum with a relatively sharp long wavelength limit, and an extensive system or molecular bands extending from this limit toward longer wavelengths. The continua are assumed to exist at all times that the molecules have sufficient population, but the band systems, which depend upon the population of the higher vibrational levels, are assumed not to exist until. the passage of a vibrational relaxation period.

While in principle the relaxation time should be measured from the time that each zone is first heated (actually the temperature-time history should be taken into account), a satisfactory first approximation is given by use of the time since the detonation. The relaxation time for \mathbf{N}_{2} at sea level is taken as $5 \times 10^{-7} \mathrm{sec}$ and for O_{2} as 3×10^{-7} secs. These times are scaled inversely with the density to obtain the relaxation times at higher altitudes. These times are based on data by Blackman (1956).

The absorption edge and the continuum absorption due to a particular species must fade away as the population is diminished by dissociation. At a given density, the population decreases very rapidly with temperature as soon as $k T$ becomes comparable with the dissociation energy. Due to the finite zoning structure, the population of a particular specie will be appreciable in one zone, but negligible in a neighboring hotter zone due to the rapid temperature dependence of the populations. Thus, for the purpose of computing absorption edges, the species can be assumed to exist below a certain temperature and not to exist above that temperature. The dissociation is thus assumed to take place at a temperature rather than over a narrow temperature range. The dissociation temperatures for N_{2}
and O_{2}, as a function of density, are represented in the code by two formulae (1708-1709) and are used in the SWABZ subroutine (0572-0580). The sequence ($0612-0669$) computes the $\mathrm{Z}^{\mathbf{+}}$ values (ZO in the code). The Z^{+}function depends on λ_{c} which has been determined above, and the temperature T_{R} used to describe the spectral distribution of the radiation incident upon the zone. The sequence (0622-0642) selects this temperature for each zone. In the case of an optically thick fireball, this temperature is that of the first zone at optical depth greater than 0.7 from the zone in question (0628). For a transparent fireball, where the radiation comes from a shell rather than from a "surface", the temperature is taken as an optical depth weighted average of the zones interior to the zone in question (0624). This "shell source" sequence is important only at high altitudes where the fireball is transparent, and when the temperatures are still high enough to have radiative flow in the far UV region of the spectrum where the absorption edges occur.

The Z^{+}values are corrected for the effects of intervening zones between the source of the radiation and the zone in question (0655).

The sequence (0676 -0688) becomes effective at very high altitudes when the configuration is quite thin and thermal radiation plays only a minor part in determining the temperature distribution. Under these circumstances, the series expansion of the source function should not be truncated and derivatives of higher order than the first should be included. But since the radiation is of little importance in this case, the series can be further truncated so that only the zero order term is used and the code automatically switches over to radiative transfer for isothermal optically thin slabs.

The variable EMS (0689) is used as an estimate of the total emissivity. It corresponds to the $\mathrm{Z}^{\boldsymbol{+}}$ function for that zone having the maximum cut-off wavelength, but without correction for intermediate zones.

A. 9 Radiative flux routine

Since all the needed data has been generated elsewhere by the code, the radiative flux routine is particularly simple (1183).

To perform the flux integration a boundary condition is needed. For this purpose, the inward flux incident on the outer boundary of the configuration is chosen as zero (1190).

The inward flux at the boundary, one zone inside, is given by the sum of the transmitted and emitted components (1193) as in Eq. (A.27). The integration continues inward until the spherical central zone is reached. The outward flux for this zone is the sum of the transmitted inward flux and the local emission (1195). The integration then proceeds outward (1197) using Eq. (A.26). One can view this process as an integration starting at one side of the fireball, passing through the center, and then on out the other side. All of the inward and outward fluxes needed to form the radial component of the flux divergences (1211) are generated during this integration.

It should be noted that this subroutine is written again for N spectral bands, and that the total directional flux at a given boundary is obtained by a summation over the spectrum, even though only 1 spectral band is used by the present code. In addition, the A function used in (1193-1198) does not correspond to the transmission function used elsewhere in the text, but to (1-A) as explained in the SWABZ subroutine.

The energy Equation (Eq. (A. 5)) is solved by an iterative method as described by Hillendahl (1964). Subroutine COEFF (1395) performs the necessary algebra to form the required derivatives.

The basic approach is to compute the derivatives numerically by a ripple zone technique, rather than to derive and to code explicit formulae for the derivatives. In using this technique, the temperature of a single zone is increased 2%, then formulae identical to those used in subroutine SWABZ are used to calculate those radiative properties which change as a result of this temperature increment (1429-1576). A flux integration is then carried out (1577-1593), the flux derivatives are formed (1614), and the perturbed variables are returned to their normal values (1627) which were saved (1411). This ripple zone process is repeated until all the required derivatives are available. Derivatives with respect to zone temperature more than two zones distant are truncated.

The energy equation derivatives, including both the radiative and hydrodynamic parts, are formed numerically (1647). The data is then available to form a set of linear algebraic equations for the temperature increments of the zones.

This matrix is then solved by direct elimination and back substitution using recursion formulae (1673) and (0447).

This numerical method of solution, involving the ripple zone method of obtaining flux derivatives and the step by step formation of the energy equation derivatives has been found to be both convenient and economical. If details of the radiative properties or flux formulae are changed, duplicates of the new formulae are simply inserted into the coefficient subroutine without the necessity of deriving explicit formulae for the
derivatives, which in some cases, have as many as 40 terms. Such lengthy formulae are difficult to derive and code without errors, and the sorting of terms to avoid arithmetic truncation difficulties is a major task. Since the actual number of operations to be carried out by the computer is approximately equivalent in the two methods, the numerical technique is to be preferred.

A. 10 Code listing

The pages following present a complete listing of an actual working radiation-hydrodynamic code which has been described in sections A.l-A.9. No attempt has been made to edit the listing for publication purposes since this practice quite often results in the publication of codes that do not work.

44 FORMATC 1 H .6 H MOOE $=14 / 6 \mathrm{H} \quad \mathrm{NMC}=[4 / 6 \mathrm{HNZONE}=14 / 6 \mathrm{H} \quad \mathrm{NOS}=14 / 6 \mathrm{H} \quad \mathrm{MCL}=14 / 0052$
44
00532E11.4/6H BR=E11.4/7H TIMEL=1PE11.4)
FGRMAT(1H1.2I4.IPE12.3.[5. IPGE12.3/(14.1P12E10.3)] 0054
FORMATCIH.18HZONE SPLIT AT NMC=14.5X.SHTIME=1PEII.4.5X.5HZONE=14, 0056
119) 0057
FORMAT(1H1.30X.4HRUN=14.15X,20HLOG PGWER (ERGS/SEC)/6H CYCLE:X.4HT 0058
 0059
36HRADIUS/15X.76A1) 0060
FORMAT(1H , 15HREZONED AT NMC= [4,5X,5HTIME=1PE11.4.5X,5HZONE=14.17) 0061
FGRMAT(14,1PSE13.5) 0062
NSZ $=1$ 0063
REWIND 15 0064
REYIND 16 0065
READ INPUT TAPE S.40.NR.MODE,NMC.NLP.NDD.LZ.NZONE,NQS.MCL. TIMEL 0066

1. BLANK. AST. TEE, PLUS. PERIOD. OASH, EQUAL, PINUS.FFF, UUU, PPP 0067
PRINT 8321. MCL. TIMEL 0068
8321 FORMAT(34H NORMAL TERMINATION CONDITION NMC=\{4,10X.5HTIME=1PE12.3) 0069
WRITE OUTPUT TAPE 15.12345.NR 0070
12345 FORMAT(IHI///////////IH .40X. 32HR W HILLENDAHL PALO ALTO 201 0071
123451//1H.40X.33HPRODUCTION OUTPUT LIST RUN NUMBERI4) 0072
READ INPUT TAPE 5.41.NR.NMC.TIME.DT.FLEX.CS.CR.BR.RS 0073
NSTART = NMC 0074
DTMIN=DT 0075
NEG=NMC 0076
MCOC=NMC+50 0077
NMAG = MCDC 0078
$\mathrm{JXC}=0$ 0079
NMCS = NMC 0080
TIMES = TIME 0081
FLIX=FLEX 0082
NSTOP=0 0083
$N R Z=50$ 0084
NB=14 0085
[PS=0 0086
$L Z M 1=L Z-1$ 0087
LZM2=LZ-2 0088
IF (MODE-1)1.1.1000 0089
1 CALL ENTRY 0090
WRITE OUTPUT TAPE 6. 44 .MODE,NMC,NZONE.NOS,MCL.RS.TIME,DT.CS.CR, 0091
18R, TIMEL 0092
$F B R=R(100)$ 0093
RTEST=R(1) 0094
NPL =NMC 0095
GO TO 1036 0096
1000 READ INPUT 0097
1000 1K,K=1.100) 0098
READ INPUT TAPE 5.43.NMC,NR,(NMC,RZ(K),R2(K),ZMAS(K),DR(K),RHOZ(K) 0099
2. TR(K),NR,K,K=1,100) 0100
READ INPUT TAPE 5.50.NR.TIME,TEE,WKT,TDN2,TDO2 0101
READ INPUT TAPE 5.50.NR,SCALE.EQUAL.Q7I.O47.TIMEW 0102
```
            NB=NMC+1 0103
            LZ=100
                0 1 0 4
            NLP=NLP+25 0105
            DTMIN=DT=0.1 0106
            CALL REJUST 0107
                    0 1 0 8
            IPS=0
            NPL =NMC
                0109
1034 WRITE OUTPUT TAPE 6.1035.OT,DR(1).(K,R(K),RHOZ(K).V(K),T(K).U(K).0 0110
    I(K), ZMAS (K),DR(K),K=1.100)
            0111
1035 FORMATC1H1.1OHINPUT DATA,10X,3HDT=E12.4,5X,3HDR=E12.4/3H K.2X.4HR
    I(L),8X,7HRHOZ(K),5X,4HV(K),8X,4HT(K),8X,4HU(L),8X,4HQ(K),8X,7HZMAS 0113
    I(K).5X,5HDR(K)/(I4.IP8E12.4))
        YRITE OUTPUT TAPE 6.44 ,MODE,NMC.NZONE.NOS.MCL.RS.TIME.OT.CS.CR.
    1BR,TIMEL
        FBR=R(100)
        RTEST=R(1)
1036 NTAPE=15
    GO TO 3000
C MASTER CYCLE RE-ENTRY POINT
    2000 TIME = TIME +DT
    ROUTINE TO CHANGE NUMBER OF ZONES IN USE " " LIMIT 100 ZONES
    OO 14 J=1,100
    K=101-J
    IF(U(K)-1.OE+02) 11.12.12
11 IF(T(K)-2.0:T(100)) 14.14.12
    LZ=K+6
    GO TO 16
    CONTINUE
    LZ=100
    IF(LZ-100) 18,18,17
    LZ=100
    LZM!=LZ-1
    LZM2=LZ-2
    LZP1=LZ+1
    LZP2=LZ +2
    FLEX=FLEX+FLOX*DT 0139
    FLEX=FLEX+FLOX=DT
    IF(NMC) 33.24.26
    NTAPE=15
    CN(LZ)=0.0
    TFLUX=FLOX
    FLEX=0.0
    GO TO }73
    IF(NMC- 3) 27.27.29
    NTAPE=6
    GO TO }3
    IF(TIME-TIMEW) 33.30.30
    TIMEW=TIMEW*(10.0*&(1.0/18.0)) 0150
0149
    IF(NMC-4) 31.29.31 0151
31 NTAPE=15
0152
    LZP2=N1
0153
```

$32 C N(L Z)=(T I M E-T I M E S) / F L O A T F(N M C-N M C S) \quad 0154$
TFLUX $=(F L E X-F L I X) /(T I M E-T I M E S) \quad 0155$
732 CALL CGSPO 0156
$\begin{array}{ll}\text { MOP INOP } & 0157\end{array}$
FLIX=FLEX 0158
NHCS $=$ NHC 0159
TIMES = TIME 0160
LZP2 $=L Z+2$ 0161
33 CONTINUE 0162
494 IF (NMC-MCDC) 414.409.409 0164
409 MCDC $=$ MCDC $+50 \quad 0165$
REWIND 16 0166
MODE $=$ MODE $+1 \quad 0167$
MRITE OUTPUT TAPE 16.40,NR,MGDE,NMC.NLP,NEG.LZ.NZGNE,NQS.MCL. 0168
1 TIMEL.BLANK, AST. TEE, PLUS.PERIOD. DASH.EQUAL,PINUS,FFF,UUU, PPP 0169
VRITE OUTPUT TAPE 16.41.NR.NMC.TIME.DT.FLEX,CS.CR.BR,RS 0170
WRITE OUTPUT TAPE 16.42.NMC,NR, (NMC.R(K).U(K),V(K),Q(K),T(K), 0171
$1 P(K), N R, K, K=1.100) 0172$
WRITE GUTPUT TAPE 16.43.NMC.NR. (NMC.RZ(K).R2(K).ZMAS(K).OR(K). 0173
IRHOZ(K).TR(K),NR,K.K=1.100) 0174
WRITE OUTPUT TAPE 16.50.NR.TIME.TEE.WKT,TON2.TDO2 0175
WRITE GUTPUT TAPE 16.50.NR,SCALE.EQUAL.Q71.047.TIMEW 0176
MODE $=$ MODE - $1 \quad 0177$
C REZONE SUITCH 0178
C REZONE SWITCH 0179
414 RTEST=R(LZ-5) 0180
NZTS=LZ-11 0181
IF(MCP-3) 415.415.4150 0182
C 4150 ALL OPTICALLY THICK CASES 0183
4150 NZTS=MCP-4 0184
$\begin{array}{ll}\text { PMT }=2.55 & 0185\end{array}$
4153 IF (NZTS-9) 427.417.417 0186
C 415 ALL TRANSPARENT CASES 0187
415 IF(T(4)-2.0*TON2) $4170.4170 .416 \quad 0188$
C 416 HIGH ALTITUDE EARLY PHASE 0189
416 DO $4161 \quad L=9 . L Z \quad 0190$
IF(T(L)-1.5*TON2) 4160.4161.4161 0191
4160 NZTS=L-1 0192
PMT $=1.5$ 0193
IF (NZTS-9) 427.417.417 0194
4161 CONTINUE 0195
C 4170 LATE TIME TRANSPARENT CASE 0196
4170 DO $4140 \mathrm{~J}=11 . L Z \quad 0197$
IF(R(J)-W(l.9) 4140.4141 .4141
4141 NZTS=J-5 0199
PMT=2.8 0200
IF(NZTS-9) 427.417.417 0201
4140 CONTINUE 0202
417 DO $426 \mathrm{~K}=9$,NZTS 0203
4013 IF (NMC-NRZ) 427.427.419 0204
419 [F($(R(K)-R(K-2)]-0.08 \approx R T E S T) \quad 422.422 .426$ 0205
422 IF (ABSF (T(K)-T(K-1))-0.304T(K)) 423.423.426 0206
423 IF $\operatorname{CABSF}(V(K)-V(K-1))-0.7$-V(K)) 424.424.426 0207
424 IF $(Z$ MAS $(K)+Z M A S(K-1)-P M T * Z M A S(K-2)) 425.425 .426$ 0208
425 IF(OCK)-0.05*P(K)) 9425.9425.426 0209
9425 L2P2=K 0210
NRZ $=$ NMC 0211
$J X C=J X C+1$ 0212
WRITE OUTPUT TAPE22.49.NMC.TIME.LZP2 .JXC 0213
URITE GUTPUT TAPE 6.49.NMC.TIME.LZP2 .JXC 0214
call rezone 0215
LZ=LZ-1 0216
LZM2=LZ-2 0217
LZMI $=$ LZ-1 0218
$L Z P 1=L Z+1$ 0219
LZR=L2R-2 0220
LZP2=LZ +2 0221
NRZ $=$ NMC +2 0222
GO TO 427 0223
426 CONTINUE 0224
C OPTICAL SPLIT TEST 0225
427 NS=LZ-S 0226
$K S=0$ 0227
(F(NMSP-NMC) 428.428.448 0228
428 DO $440 \quad \mathrm{~J}=3 . \mathrm{NS}$ 0229
$429 \mathrm{~K}=\mathrm{LZ}-\mathrm{J}$ 0230
$\operatorname{lF}((R(K)-R(K-1))-0.08 * R(L Z)) \quad 430.430 .442$ 0231
430 IF(TAU(K.1)-1.7) 440.440.431 0232
431 KS=KS+1 0233
432 IF(KS-1) 448.433.448 0234
433 IF(Q(K)-P(K)) 448.434.434 0235
434 IF(UCK)-1.OE+05J 448.435.435 0236
435 KST $=K$ 0237
$K S P=K+5$ 0238
OO 436 J=KST.KSP 0239
IF((R(J)-R(J-1))-200.0) $436,436,437$ 0240
436 CONTINUE 0241
GO TO 448 0242
$437 \quad$ KZ2 = J 0243
IF(T(J)-6.0E+04) 443.448.448 0244
440 CONTINUE 0245
441 GO TO 448 0246
$442 \quad$ KZ2 $=K$ 0247
443 NMSP = NMC + 3 0248
JXO $=\mathrm{JXD}+1$ 0249
444 CALL SPLIT 0250
WRITE OUTPUT TAPE 6.47.NMC.TIME.KZ2.JXD 0251
WRITE OUTPUT TAPE 22.47.NMC.TIME.KZ2.JXD 0252
LZ $=$ LZ $\mathbf{Z}+1$ 0253
LZMI $=$ LZ 0254
$L Z P 1=L Z+1$ 0255
L2P2=LZ +2 0256
LZM2:LZ-2 0257
448 IF(NMC-NSTA负T) 449.451.449 02590258
[F(NHC-NSTART-1) 450.451.450 0260
450 IF (NHC-NDD) 453.451.453 0261
45 K $22=-451$ 0262
452 CALL DIAGNS 0263
453 NMC =NMC +1 0264
C 0265
0266
IF (NSTGP) 35.35.36 0267
35 IFCTME-6.0) 34.52.52 0268
34 IF[SENSE SWITCH 1) 52.65 0269
52 MODE $=$ MODE +1 0270
NSTOP $=1$ 0271
MCL $=\mathrm{MCL}+3000$ 0272
CALL DIAGNS 0273
GO TO 28 0274
PUNCH 40,NR, MODE, NMC.NLP,NEG,LZ,NZONE,NOS.MCL. TIMEL 0275

1. BLANK. AST, TEE, PLUS, PERIGD, DASH, EQUAL, PINUS, FFF, UUU, PPP 0276
PUNCH 41,NR,NMC.TIME,DT,FLEX,CS,CR, BR,RS 0277
PUNCH 42, NMC, NR, (NMC,R(K),U(K),V(K),Q(K),T(K),P(K),NR.K.K=1,100) 0278
PUNCH 43.NHC.NR. (NMC.RZ (K),R2(K),ZMAS(K).DR(K),RHOZ(K) 0279
2. TR(K).NR.K.K=1.100) 0280
PUNCH SO.NR, TIME, TEE, WKT. TDN2. TDO2 0281
PUNCH SO.NR.SCALE,EQUAL.071.047.TIMEW 0282
END FILE 15 0283
END FILE 25 0284
REMIND 25 0285
CALL COPY (25.15) 0286
END FILE 15 0287
END FILE 22 0288
REMIND 22 0289
CALL COPY(22.15) 0290
END FILE 15 0291
WRITE GUTPUT TAPE 6.37.JXC 0292
37 FGRMAT(1H .I3HREZONE CALLEDI4.6H TIMES) 0293
REMIND 16 0294
NR=9999 0295
WRITE QUTPUT TAPE 41.1499.NR.KZ6 0296
URITE TAPE 31.NR.KZ6 0297
1499 FGRMAT(214) 0298
GRITE GUTPUT TAPE 32. 45.NR,NMC,TIME,LZ.P(99),T(99),RHOZ(99),POWER 0299
2.P47.FBR. $(K, R(K), U(K), P(K), U R(K), T(K), F O S(K), F I S(K), O M(K), O(K)$. 0300
3FZ(K).E(K),HPPP(K),K=1,LZ) 0301
[F(NHC-NHA6) 1502.1502.1501 0302
1501 REAO INPUT TAPE 16.40.NR,MODE.NMC.NLP,NEG.LZ.NZONE,NOS.MCL. 0303
ITIMEL, BLANK, AST. TEE, PLUS, PERIOD. DASH. EQUAL, PINUS. FFF, UUU, PPP 0304
READ INPUT TAPE 16.41.NR.NMC,TJME.DT,FLEX.CS,CR,BR,RS 0305
READ INPUT TAPE 16.42.NMC,NR, (NMC,R(K),U(K),V(K).O(K),T(K). 0306
1P(K).NR.K.K=1.100) 0307
READ INPUT TAPE 16.43.NMC.NR, (NMC,RZ(K),R2(K),ZMAS(K), DR(K), 0308
IRHOZ(K), TR(K), NR,K,K=1,100) 0309
READ INPUT TAPE16.50.NR,TIME, TEE,WKT.TDN2.TOO2 0310
READ INPUT TAPE16.50,NR.SCALE,EQUAL,071.047.TIMEW 0311
PUNCH 40, NR. MOOE, NMC.NLP, NEG.LZ, NZONE, NOS, MCL, TIMEL 0312
3. BLANK, AST. TEE, PLUS, PERIOD. DASH, EQUAL, MINUS, FFF, UUU, PPP 0313
PUNCH 41.NR,NMC. TIME, DT,FLEX,CS,CR,BR,RS 0314
PUNCH 42. NMC, NR, (NMC,R(K),U(K),V(K), Q(K),T(K),P(K),NR,K,K=1,100) 0315
PUNCH 43.NMC,NR, (NMC,RZ(K),R2(K),ZMAS(K).DR(K),RHOZ(K) 0316
4. TR(K),NR,K,K=1.100) 0317
PUNCH 50.NR.TIME.TEE,WKT.TDN2.TDO2 0318
PUNCH 50.NR.SCALE,EQUAL,Q71.Q47.TIMEW 0319
END FILE 16 0320
1502 CALL UNLOAD(16) 0321
CEASE $=1.0 E+29$ 0322
END FILE 32 0323
END FILE 42 0324
REWIND 42 0325
CALL COPY(42.32) 0326
CALL UNLOAD(42) 0327
C EXTRA COPY OF USER TAPE 32 INFO COPIED AS FILE 2 OF TAPE 15 0329
END FILE 32 0330
REWIND 32 0331
CALL COPY(32.15) 0332
END FILE 15 0333
CALL COPY (32.15) 0334
END FILE 15 0335
CALL UNLOAD(15) 0336
CALL UNLOAD(32) 0337
END FILE 41 0338
CALL UNLOAD(41) 0339
END FILE 31 0340
CALL UNLOAD (31) 0341
1500 CALL EXIT 0342
65 NTI = 0343
IF(NMC-MCL) 64.64.52 0344
64 IF(TIME-TIMEL) 66.66,52 0345
C SET RETARDED VARIABLES 0346
66 DO $71 \quad K=1.100$ 0347
$67 \quad V R(K)=V(K)$ 0348
68 ER(K)=E(K) 0349
$69 \quad \operatorname{PR}(K)=P(K)$ 0350
$70 \quad W(K, 4)=T(K)$ 0351
$W(K, 6)=V(K)$ 0352
$W(K, 7)=P(K)$ 0353
$\forall(K, 8)=O(K)$ 0354
$W(K, 9)=E(K)$ 0355
$71 \operatorname{DIVFR}(K)=\operatorname{DIVFA}(K)$ 0356
$K R T=0$ 0357
72 IF(DT-50.0*OTMIN) 74.74.73 0358
73 DTMIN=OT/50.0 0359
74 CALL HYDRO 0360
K24 $=$ KZ4 0361
IF(UC99)-1. 0E+03) 290.290.52 0362
C INITIAL TEMPERATURE EXTRAPGLATION 0363
290 CONTINUE 0364
C ITERATION CYCLE RE-ENTRY POINT 0365
C DERIVATIVES WITH RESPECT TO TEMP DP DE 0366
3000 DO $301 \mathrm{~K}=1 . \operatorname{LZ}$ 0367
3001 IF(T(K)) 3002.3002.300 0368
$3002 K 22=-3000$ 0369
CALL DIAGNS 0370
GO TO 52 0371
$300 \quad T P(K)=1.02 * T(K)$ 0372
301 TS K) $=T P(K)$ 0373
303 CALL STATE 0374
304 DO $310 \mathrm{~K}=1, \mathrm{LZ}$ 0375
$305 \quad P P(K)=P(K)$ 0376
$306 \mathrm{EP}(K)=E(K)$ 0377
$309 \quad T M(K)=0.98 * T(K)$ 0378
$310 \quad$ TS $(K)=T M(K)$ 0379
311 CALL STATE 0380
312 DO $318 \mathrm{~K}=1 . \mathrm{LZ}$ 0381
313 PM(K)=P(K) 0382
$314 E M(K)=E(K)$ 0383
$315 \operatorname{DPT}(K)=(P P(K)-P M(K)) /(T P(K)-T M(K))$ 0384
$316 \mathrm{DET}(K)=(E P(K)-E M(K)) /(T P(K)-T M(K))$ 0385
$318 \quad T S(K)=T(K)$ 0386
320 call state 0387
c Call radiative properties routine 0388
call swabz 0389
$501 \quad$ LZR $=$ LZR 0390
MCP $=$ MCP 0391
KZ1 $=k Z 1$ 0392
KZ2=KZ2 0393
K23=K23 0394
K $28=\mathrm{KZ8}$ 0395
KZ9 $=$ KZ9 0396
321 NCW=NCW 0397
$322 \operatorname{DTAU}(L Z P 1,1)=0.0$ 0398
C INTENSITY INTEGRATION 0399 400
500 CALL FLUXS 0401
502 IF(IPS) 503.503.530 0402
503 IPS=IPS+1 0403
504 TIME=TIME-DT 0404
505 GO TO 2000 0405
C TEMPERATURE TEST BYPASS ON FIRST GUESS 0406
530 IF(NTI) 540.540.532 0407
C TEMPERATURE TEST 0408
532 DO $536 K=1 . L 2$ 04095330410
536 CONTINUE 0411
C AIIN CYCLE COMPLETED -- RETURN TO 2000 0412
537 GO TO 2000 0413
$540 \quad$ NT I =NT $1+1$ 0414
ENERGY EQUATION BLOCK 600 0415
600 IF(NTI-3) 601.601.2000 0416
601 OO 617 K=1.LZ 0417
602 L=K 0418
$603 \quad N=110+K$ 0419
613 DE(K)=(E(K)-ER(K))/DT 0420
$614 \quad P A(K)=(P R(K)+P(K)) / 2.0$ 0421
$615 \operatorname{RESOUE}(K)=D E(K)+(P A(K)+O(K)) *(V(K)-V R(K)) / D T$ 0422
$6251+(D 1 V F A(K)+D I V F R(K)) / 2.0$ 0423
617 CONTINUE 0424
C TEMPERATURE ITERATION OF ENERGY EQUATION 0425
700 [F(LZR-4) 703.703.701 0426
701 CALL COEFF 0427
702 GO TG 829 0428
C NO ITERATION OF RADIATIGN 0429
703 DO $704 \mathrm{~K}=1 . \mathrm{LZ}$ 0430
704 DTM(K)=-RESDUE(K)/((DET(K)/DT)+(DPT(K)/(2.0*DT))E(V(K)-VR(K))) 0431
705 IF(NMC-NLP) 906.706.906 0432

$706 \quad \begin{aligned} & \text { NLP }=\text { NLP }+50 \\ & \\ & \\ & \\ & \\ & \text { PRINT 707.NMC. TIME, DT,LZ }\end{aligned}$

$706 \quad \begin{aligned} & \text { NLP }=\text { NLP }+50 \\ & \\ & \\ & \\ & \\ & \text { PRINT 707.NMC. TIME, DT,LZ }\end{aligned}$ 0433 0433
706 NLP=NLP+50 \quad PRINT 707.NMC, TIME,DT,LZ
706 NLP=NLP+50 \quad PRINT 707.NMC, TIME,DT,LZ 0434 0434
0435
FIGRATC23H PRUGRESS REPURT NMC=I4. 5X.5HTIME=1PE12.3.5X.11 HT IME
0436
0436
STEP = 1PE12.3.10X. SHNORAD [4///]
STEP = 1PE12.3.10X. SHNORAD [4///]
0437
0437
708 GO TO 906 0438
C RADIATIVE ITERATION 0439
829 CONTINUE 0440$831 \quad$ NLP $=$ NLP +50
830 IF(NMC-NLP) 987.831.987 0441 0442
PRINT 832.NMC,TIME.DT.LZ
PRINT 832.NMC,TIME.DT.LZ 0443 0443
832 FORMATC23H PROGRESS REPORT NMC=14. 5X.5HTIME=1PE12.3.5X.11HTIME 0444
832 1 STEP=IPE (2.3.10X.8HRADHYDROI4///) 0445
C 446
COEFFICIENTS NOW KNOWN-SOLUTION FOR DTM(K)
987 LZJ = L ZR + 1 0447
00988 K=LZJ.LZ 0449
$988 \quad \operatorname{DTM}(K)=-\operatorname{RESDUE}(K) /((D E T(K) / D T)+(D P T(K) /(2.0 * D T)) *(V(K)-V R(K)))$ 0450
$900 \operatorname{DTM}(L Z R)=(E N(L Z R)-E N(L Z R-1)) /(C N(L Z R)-C N(L Z R-1))$ 0451
902 DTM(LZR-1)=(EN(LZR-1)-CN(LZR-1)*DTM(LZR)) 0452
DO $905 \mathrm{~J}=3 . \mathrm{LZR}$ 0453
$K=L Z J-d$ 0454
$905 \operatorname{DTH}(K)=E N(K)-D N(K) * D T M(K+2)-C N(K) * D T M(K+1)$ 0455
906 CONTINUE 0456
C STABILITY CHECK 0457
907 DO $930 K=1 . L Z$ 0458
908 IF(DTM(K)) 909.930.910 0459

 0511
 0512
IF(TS(K)-10.0) 301.298.298 0513
IF (HMFF-HMFP) 299.301.301 0514
HMFP =AMFF 0515
DTAU(K.1)=1.5\#(R(K)-R(K-1))/HMFP 0516
$A(K, N)=E X P F(-D T A U(K, N))$ 0517
$B C(K, N)=5.67 E-05 *(T(K)=4)$ 0518
$T S(K)=T S(K) \cdot 11606.5$ 0519
CONTINUE 0520
continue 0521
126 0522
C SOURCE FUNCTION INTERPOLATION 0523
DO $201 \mathrm{~K}=1 . \mathrm{LZ}$ 0524
DO $202 \mathrm{~N}=1 . \mathrm{NSZ}$ 0525
$B B(K, N)=(([((R(K+1)-R(K)) * T(K) * 4)+((R(K)-R(K-1)) * T(K+1) * * 4)) /$ 0526
311
$1(R(K+1)-R(K-1)) j) * 5.67 E-05$ 0527
$B B(K .2)=B B(K, 1)$ 0528
$S(K, N)=(B C(K, N)-B C(K+1, N)) /(D T A U(K, N)+D T A U(K+I, N))$ 0529
$W(K, N)=1.0-A(K, N)-A(K, N) * D T A U(K, N)$ 0530
IF(W(K.N)-1.OE-04) 509.202.202 0531
$W(K, N)=0.5 *(D T A U(K, N) * * 2)$ 0532
CONTINUE 0533
CONTINUE 0534
0535
SET OPTICAL INDICES 0536
$K M=0$ 0537
$501 \quad K O=0$ 0538
$502 K N=0$ 0539
503 TAU(LZ.1)=DTAU(LZ.1) 0540
511 DO $522 \mathrm{~J}=1 . \operatorname{LZM}$ 0541
$512 \quad K=L Z-J$ 0542
513 TAU(K.1)=TAU(K+1.1)+DTAU(K.1) 0543
514 IF(TAU(K,1)-S.0E-06) 522.515.515 0544
$515 \quad K N=K N+1$ 0545
516 IF (KN-1) 518.517.518 0546
517 LZR=K+3 0547
518 IF(TAU(K,1)-.44] 522.519.519 0548
519 KD=KD+1 0549
520 [F(KO-1) 622.523.622 0550
523 FBR=R(K) 0551
622 [F(TAU(K.1)-1.0) 522.623.623 0552
$623 \quad K M=K M+1$ 0553
624 IF(KM-1) 522.625.522 0554
MCP=K 0555
625
CONTINUE
CONTINUE 0556 0556
52
[F(LZR-LZ+1) 530.530.529 0557
529 LZR=LZ-1 0558
530 CONTINUE 0559
IF(KD) 521.521.524 0560
521 $F B R=0.0$ 0561

```
        MCP=0 0562
524 CONTINUE
0563
C SET CUTOFF WAVELENGTH CWL(K) 0564
    CVMAX=0}
    KCNMAX=0
    CHL(MCP
    NCM=MCP 0568
    TR(MCP )=T(MCP ) . 0569
540 DO 565 K=1.LZ 0571
541 IF(T(K)-TON2) 546.542.542 0572
C OPACITY OUE TO ATOMIC SPECIES 0574
542CML(K.1)=700.0*EXPF(-0.36*(T(K)-11606.5)/11606.5) 0575
B544 DTH(K)=212121212121 0576
    IF(CWL(K.1)-275.0) 545,560.560 0577
545 CVL(K,1)=275.0 0578
GO TO 560 0579
546 IF(T(K)-TOO2) 55I.547.547 0580
C OPACITY DUE TO N2 MOLECULE 0582
B 547 DTH(K)=454545454545 0583
TCN2=5.0E-07*1.293E-03*V(K) 0584
549 CWL(K,1)=1140.0*((CR(K)-R(K-1))/(V(K)*1.293E-03))**0.11) 0585
    1*(1.0-EXPF(-TIME/TCN2))
        IF(CWL(K,1)-1000.0) 550.560.560 0587
            CML(K.1)=1000.0 0588
            GO TO 560
0 5 8 9
0 5 9 0
C GPACITY DUE TO O2 MOLECULE 0591
551 TC=4250.0-271.0*LOGF(1.293E-03*V(K)) 0592
    TCO2=3.0E-07*I.293E-03*V(K) 0593
B S52 DTH(K)=676767676767 0594
```



```
554 CWL(K.1)=1500.0+TS(K)*(0.163+0.0745*LOGF(OR(K)*RHOZ(K)/1.293E-03)) 0596
554 1*(1.0-EXPF(-TIME/TCO2))}059
```



```
556 TSB=TS(K)&(.0647*LGGF(R(K)-R(K-1))-0.25-.109*LOGF(1.293E-03*V(K)J) 0599
    CWL(K.1)=3500.0+TSB-(2000.0+TSB) EEXPF(-TIME/TCO2) 0600
557 IF(CWL(K.1)-1500.0) 558.560.560 0601
558 CWL(K,1)=1500.0 0602
560 [F(K-MCP) 565,565.561 0603
561 IF(CWL(K.1)-CWMAX) 565.565.563 0604
563 CWMAX=CWL(K.1) 0605
564 KCWMAX=K 0606
565 CONTINUE 0607
566 NCW=KCWMAX 0608
    0609
    IF(LZR-NCW) 603.603.604 0610
603 LZR=NCN+1 0611
C CALCULATE 2O VALUES 0612
```

```
6 0 4
6 0 5
    RD=0
    00670 L=2.LZ
    TR(L)=T(L)
    iF(T(L)-8.0E+04) 607.668.668 0617
6 0 7
    KD=KD+1
    IF(KD-1) 608.608.609
```



```
0
C SELECT TR(L)= TEMPERATURE OF RADIATION TRAVERSING ZONE L
610 LIM=L-1
611 TAUSUM=0.0 0624
615 DO 630 NN=1.LIM 0625
616 M=L-NN 0626
617 TAUSUM=TAUSUM+DTAU(M.1) 0627
620 IF(TAUSUM-0.7) 630.627.627 0628
627 TR(L)=T(M) 0629
628 IF(M-2) 630.630.638 .0630
630 CONTINUE 0631
IF(T(L)-2500.0) 631.632.632
0632
631 TR(L)=TR(L-1) 0633
    GO TO 637 0634
632 EPTSUM=0.0 0635
    EPSUM=0.0 0636
    DO 635 K=3.LIM 0637
    EPSUM=EPSUM+DTAUCK.1) 0638
    EPTSUM=EPTSUM+T(K)&DTAUCK.1) 0639
    IF(T(K)-2500.0) 636.636.635 0640
635
636
637
638
639
640
641
641
642
644 ZI(I.2) \(=7.61 E+22 /((C W L(I .1) * T R(L)) * * 3) 0650\)
646 CONTINUE
ZMAX \(=Z 1(M+1.2)\)
\(Z O(L, 1)=Z 1(M+1.2)\)
0641
CONTINUE 0642
\(M=2 \quad 0643\)
\(1 Z=M+1 \quad 0644\)
OO \(646 \quad 1=12 . L\)
IF(TR(L)\#CWL(1.1)-2.0E+08) 641.641.644 0646
ZI(1.2) \(=\operatorname{EXPF}((-3.41 E-08 * C W L(I .1) * T R(L)+2.5 E-25 *(C W L(I .1) * T R(L \quad 0647\)
2) \() * * 3)\}=\operatorname{EXPF}(-3.07 E+13 /(C W L(I .1) * T R(L)\} * * 1.8)))\)
GO TO \(646 \quad 0649\)
647 IF(L-M-1) 668.663.650 0654
C CORRECTION FOR INTERMEDIATE ZONES * \(065 S\)
\(650 \quad 1 Z=M+2 \quad 0656\)
651 CWLTST \(=\) CWL \((M+1.1) 0657\)
65200660 NZ=[Z.L 0658
653 IF(CWLCNZ.1)-CWLTST) 654.654.657 0659
\(654 \mathrm{JF}(\mathrm{NZ}-\mathrm{L})\) 660.655.668 0660
655 ZOCL.1)=1.0 0661
656 GO TO \(660 \quad 0662\)
657 ZOCL.1)=ZICNZ.2)/ZMAX 0663
```


FKB=FKB/FKA 0715
FKE =FKE/FKA 0716
FMV =FMV/FKA 0717
$F S R=(F K E \quad F K B)(F K B+1.0)-F K B+(F M V+2)$ 0718
IF (FSR) 7700.7701 .7701 0719
$7700 U(M-2)=U(M-2)$ 0720
$U(M-1)=U(M)$ 0721
GO TO 7733 0722
7701 FSR=(FSR:0.5)/FK日 0723
UPLUS $=(F M V+F S R) /(F K B+1.0)$ 0724
UMINS $=(F M V-F S R) /(F K B+1.0)$ 0725
[F(U(M-2)-U(M)) 7722.7711.7711 0726
7711 U(M-2)=UPLUS 0727
$U(M-1)=U M I N S$ 0728
GO TO 7733 0729
7722 U(M-2)=UMINS 0730
$U(M-1)=U P L U S$ 0731
7733 CONTINUE 0732
2
$E(M-1)=(\operatorname{ZMAS}(M-1)=E(M-1)+Z M A S(M) * E(M)) /(Z M A S(M-1)+Z M A S(M))$ 0733
$T(M-1)=(E(M-1) \quad$ ZETA $)$ 0734
ZMAS (M-1) $=$ ZMAS $(M-1)+Z$ MAS (M) 0735
DIVFA(M-1) $=(\operatorname{R2}(M) / Z M A S(M-1)) *(F O S(M)-F I S(M))$ 0736
1-(R2(M-2)/ZMAS (M-1))*(FOS(M-2)-FIS(M-2)) 0737
$R(M-1)=R(M)$0738
$R Z(M-1)=R Z(M)$ 0739
$R 2(M-1)=R 2(M)$ 0740
9
$\operatorname{DR}(M-1)=\operatorname{DR}(M-1)+\operatorname{DR}(M)$ 0741
$11 \quad \operatorname{RR}(M-1)=\operatorname{RR}(M)$ 0742
13 $\operatorname{TR}(M-1)=T R(M)$ 0743
$V(M-1)=(R(M-1) * * 3-R(M-2) * 3) /(3.0 * 2 M A S(M-1))$ 0744
$P(M-1)=(P(M-1)+P(M)) / 2.0$ 0745
15
$Q(M-1)=(Q(M-1)+O(M)) / 2.0$ 0746
$\operatorname{DTM}(M-1)=0.0$ 0747
SHIFT IN EXTERIOR ZONES 0748
C 0749
DO $50 \quad K=M .99$ 0750
$21 \quad V(K)=V(K+1)$ 0751 0752
$\operatorname{RHOZ}(K)=R H O Z(K+1)$ 0753
$U(K)=U(K+1)$ 0754
$P(K)=P(K+1)$ 0755
$R(K)=R(K+1)$ 0756
$R 2(K)=R 2(K+1)$ 0757
$R Z(K)=R Z(K+1)$ 0758
$\operatorname{DR}(K)=\operatorname{OR}(K+1)$ 0759
$Q(K)=Q(K+1)$ 0760
$E(K)=E(K+1)$ 0761
DIVFA(K)=0IVFA(K+1) 0762
UR(K) $=$ UR $(K+1)$ 0763
ZMAS(K) $=$ ZMAS $(K+1)$ 0764
$\operatorname{RR}(K)=R R(K+1)$ 0765
$\operatorname{OTM}(K)=\operatorname{TTM}(K+1)$ 0766
$T R(K)=T R(K+1)$ 0767
50 0768
C AODITION OF NEW ZONE 100 0769
$51 \quad R(100)=R(99)+D R(99)$ 0770
$52 \quad R 2(100)=R(100) * * 2$ 0771
$53 \operatorname{RZ}(100)=R(100)$ 0772
RHOZ(100)=RHOZ(99) 0773
$\operatorname{RR}(100)=1.0$ 0774
DR(100)=DR(99) 0775
ZMAS(100)=(RHOZ(100)/3.0)*((RZ(100)**3)-(RZ(99)**3)) 0776
$U(100)=0.0$ 0777
$T(100)=T(99)$ 0778
$V(100)=V(99)$ 0779
$O(100)=0.0$ 0780
$T(101)=T(100)$ 0781 0782
RETURN 0783
END 0784
FORTRAN 0785
SUBROUTINE SPLIT 0786
STANDARD DIMENSIGN AND COMMON STATEMENTS AS IN MAIN PRGGRAM 0787
$M=100-K Z 2$ 0788
DO $30 \mathrm{~J}=1 . \mathrm{M}$ 0789
$K=101-\mathrm{J}$ 0790
$R(K)=R(K-1)$ 0791
$\operatorname{DR}(K)=\operatorname{DR}(K-1)$ 0792
$\operatorname{RR}(K)=R R(K-1)$ 0793
$\operatorname{RHOZ}(K)=R H O Z(K-1)$ 0794
$R Z(K)=R Z(K-1)$ 0795
R2 $(K)=R 2(K-1)$ 0796
$U(K)=U(K-1)$ 0797
$R R(K)=R R(K-1)$ 0798
$\operatorname{TR}(K)=\operatorname{TR}(K-1)$ 0799
$V(K)=V(K-1)$ 0800
$P(K)=P(K-1)$ 0801
ZMAS(K)=ZMAS(K-1) 0802
$0(K)=O(K-1)$ 0803
$T(K)=T(K-1)$ 0804
$E(K)=E(K-1)$ 0805
DIVFA(K)=DIVFA(K-I) 0806
UR(K) $=$ UR ($K-1$) 0807
30 CONTINUE 0808
C DD ZONE JUST OUTSIDE K=KZ2 0809
ZMAS (KZ2) $=2$ MAS $(K Z 2) / 2.0$ 0810
ZMAS(KZ2+1) = ZMAS(KZ2) 0811
$V(K Z 2+1)=V(K Z 2)$ 0812
RHOZ(KZ2+1)=RHOZ(KZ2) 0813
$R(K Z 2)=((R(K Z 2+1) * * 3)-(3.0 * 2 M A S(K Z 2+1) * \quad V(K Z 2+1))) * *(1.0 / 3.0)$ 0814
$R Z(K Z 2)=((R Z(K Z 2+1) * * 3)-(3.0 * Z M A S(K Z 2+1) / R H O Z(K Z 2+1)) * *(1.0 / 3.0)$ 0815RR(KZ2) $=R(K Z 2) / R Z(K Z 2)$0816


```
    RSHOCK=0.0 0868
    SAVEl=DT
        0869
    OT=CN(LZ) 0870
    STX=P(LZ) 0871
    POWER=TFLUX 1. OE-07 0872
    TCOL = (TFLUX/( EMS *12.56*S.67E-05*(FBR**2)))**0.25 0873
    TEFF=(TFLUX/(12.56*S.67E-05*(FBR**2)))**0.25 0874
    CALL PHOTOG 0875
C ESTIMATE OF OBSERVED SPECTRAL DISTRIBUTION 0876
    IF(FBR) 1059.1059.1061 0877
    059
    P47=0.37*PQWER
        0878
    041=0.0 0880
    P03=0.0 0881
    P34=0.0 0882
    P45=0.0 0883
    P57=0.0 0884
    P7I=0.0 0885
    071=0.0 0886
G0 10 1600
    1061 SAVET=T(MCP ) 0888
1062 T(MCP)=TCOL 0889
1064 IF( T(MCP) ECWLM -2.0E+08) 1065.1065.1068 0890
063 CWLM=CWL(NCW.1) 0891
1065 FLM = EXPF ( (-3.41E-08*CWLM *T(MCP)+2.5E-25*((CWLM *T(MCP))**3) 0892
1065 1)*EXPF(-3.07E+13/([CWLM * T(MCP))**l.8)))}089
1067 GO TO 1164 0894
1068 FLM =7.6IE+22/((CWLM *T(M(P))**3) 0895
1164 IF( T(MCP)*3000.0-2.0E+08) 1165.1165.1168 0896
1165 F3 = EXPF((-3.41E-08*3000.0* T(MCP)+2.5E-25*((3000.0* T(MCP))**3) 0897
1165 1)*EXPF(-3.07E+13/((3000.0*T(MCP))**1.8)))}
1167 GO TO 1264 0899
1168 F3 =7.61E+22/((3000.0*T(MCP))**3) 0900
1264 IF( T(MCP)*4000.0-2.0E+08) 1265.1265.1268 0901
1265 F4 = EXPF( (-3.41E-08*4000.0* T(MCP)+2.5E-25*((4000.0* T(MCP))**3) 0902
1265 i)*EXPF (-3.07E+13/((4000.0* T(MCP))**I.8)}) 0-003
1267 GO TO 1364 0904
1268 F4 =7.61E+22/((4000.0*T(MCP))**3) 0905
1364 IF( T(MCP)&5000.0-2.0E+08) 1365.1365.1368 0906
1365 F5 = EXPF((-3.41E-08*5000.0* T(MCP)+2.5E-25*((5000.0* T(MCP))**3) 0907
1365 1)*EXPF(-3.07E+13/((5000.0* T(MCP))**1.8)))}090
1367 GO TO 1464 0909
1368 F5 =7.61E+22/((5000.0*T(MCP))**3) 0910
1464 IF( T(MCP)*7000.0-2.0E+08) 1465.1465.1468 0911
1465 F7 = EXPF((-3.41E-08*7000.0* T(MCP)+2.5E-25*((7000.0* T(MCP))**3) 0912
1465 1)*EXPF (-3.07E+13/((7000.0* T(MCP))**1.8)))}
1467 GO TO 1564 0914
1468 F7 =7.61E+22/((7000.0^T(MCP))**3) 0915
1564 IF( T(MCP)*10000.0-2.0E+08) 1565.1565.1568 0916
1565 F1= EXPF((-3.41E-08*10000.0*T(MCP)+2.5E-25*((10000.0* T(MCP))**3) 0917
1565 1)*EXPF(-3.07E+13/((10000.0* T(MCP))**1.8)))}
```

1567 GO TO 1580 0919
$1568 \mathrm{~F} 1=7.61 E+22 /((10000.0 * T(M C P)) * * 3)$ 0920
1580 CONTINUE 0921
$T($ MCP $)=S A V E T$ 0922
1581 IF(CWLM-3000.0) 1583.1583.1582 0923
1582 F3=FLM 0924
1583 1F(CMLM-4000.0) 1585.1585.1584 0925
584 F4=FLM 0926
1585 IF(CWLM-5000.0) 1587.1587.1586 0927
1586 FS=FLM 0928
1587 IF(CWLM-7000.0) 1589.1589.1588 0929
1588 F7=FLM 0930
1589 [F(CWLM-10000.0) 1591.1591.1590 0931
$1590 \mathrm{Fl}=\mathrm{FLM}$ 0932
591 CONTINUE 0933
P03=POWER*(FLM-F3)/FLM 0934
P34 = POWER*(F3-F4)/FLM 0935
P45=POWER (F4-F5)/FLM 0936
PS7=POWER:(F5-F7)/FLM 0937
P71 =POWER*(F7-F1)/FLM 0938
P47=POWER (F4-F7)/FLM 0939
$071=071+P 71 *(T I M E-T I M E S) / 4.186 E+12$ 0940
$047=047+\mathrm{P} 47$ * $(\mathrm{T}$ IME-TIMES $) / 4 \cdot 186 \mathrm{E}+12$ 0941
$041=047+071$ 09421600 EN(1)=4.189*(R(1)**3)*(E(1)/V(1))0943 0944
BN(1$)=E N(1)$
BN(1$)=E N(1)$ 0945
CN(1)=3.14159*(U(1)**2)*ZMAS(1) 0946
DN(1)=CN(1) 0947
$\operatorname{DPP}(1)=8 N(1)+\operatorname{DN}(1)$ 0948
DO $490 \quad K=2 . L Z$ 0949
$E N(K)=4.189 *((R(K) * * 3)-(R(K-1) * * 3)) *(E(K) / V(K))$ 0950
CN(K)=3.14159*(U(K)**2+U(K-1)**2) \#ZMAS(K) 0951
$B N(K)=B N(K-1)+E N(K)$ 0952
$D N(K)=D N(K-1)+C N(K)$ 0953
$B \quad$ THETA $K)=212121212121$ 0954
IF(O(K)-STX) 490.490.488 0955
$488 \quad S T X=Q(K)$ 0956
J3=K-3 0957
489 RSHOCK=R(K) 0958
490
DPP $(K)=B N(K)+D N(K)$ 0959
EAMB=4.189*(R(LZ)**3)*E(99)/V(99) 0960
ESYSM=DPP(LZ)-EAMB 0961
ETOTAL=ESYSM/4.186E + 19 0962
PARTT =FLEX/YIELD 0963
IF(NMC) 493.492.493 0964
491
YIELD=ESYSM 0965
EOUAL = YIELD 0966
493 CONTINUE 0967
WRITE OUTPUT TAPE22.495,NR,NMC.TIME.EAMB,NCW,MCP.DPP (NCW), DPP (MCP) 0968
1, $\operatorname{TR}(N C W), \operatorname{TR}(M C P),(K, E N(K), B N(K), C N(K), D N(K), D P P(K), A(K, 1), Z O(K, 1)$, 0969

```
    2Z1(K,1),TR(K),K=1.LZ) 0970
```

FORMATEIHI,13H ENERGY CHECK, I OX, 4HRUN=14,5X,4HNMC=14.5X.5HTIME =1PE $210.3 .5 X, 6 H E \quad A M B=1$ PE $10.3 / / 5 H \quad N C W=14.5 X .4 H M C P=14.5 X .9 H D P P(N C W)=1$ PE 123.4.5X. $\operatorname{SHDPP}($ MCP $)=1$ PE $12.4,5 X, B H T R(N C W)=1 P E 10.3 .5 X, B H T R(M C P)=1 P E 10$4. 3//SH ZONE, 3X, 2HDE, $10 X$. 4HSUME, 6X, 3HDKE, $7 X, 5 H S U M K E, 5 X, 9 H S U M T O T A L E$.Silx.1HA.11X,2H20.10X.2HZI.10X,2HTR//(15.1P5E12.4.3X.1P4E12.4))THETA (1) $=646464646464$THE TA (2) = 232323232323DG $29 K=1 . L Z$$H Z(K)=\operatorname{TAU}(K, 1) / 1.5$DMM (K) $=\operatorname{DTAU(K,1)/(R(K)-R(K-1)]}$$F Z(K)=4.28 E-08 \#(E(K)+P(K)+V(K))$$D Z(K)=T A U(K, 1) / 1.5$$D P(K)=Q(K) / P(K)$$F M(K)=T(K) / 11606.5$HP(K) $=F O S(K)$ 1. OE-07HPP(K)=ABSF(FIS(K)/FOS(K))$G M(K)=1.0+(P(K) * V(K) / E(K))$$\operatorname{UR}(K)=1.0 / V(K)$
IF(PART(K)-4.0) 29.28.28DTH(K)=313131313131CONTINUE0991
SHVEL $=\mathrm{U}(\mathrm{J} 3) *(1.0+G M(\mathrm{~J} 3)) / 2.0$ 0992
PSHK $=(2.0 /(\operatorname{GM}(J 3)+1.0)) * R H 1) Z(L Z) *(S H V E L * 2)$ 0993 93
ESHK=0.5*($2.0 * S H V E L /(1.0+G M(J 3))) * * 2)$ 0994
TRSHK = T (J3) ESHK/E (J3) 0995
ETOE $=(5.67 E-05 *(T R S H K * 4) /(R H O Z(L Z) * S H V E L))+E(L Z)$ 0996
TTOE =ETOE + T (LZ)/E (LZ) 0997
POWSK $=12.56 *(R(J 3+2) * * 2) * 5.67 E-05 *(T R S H K * 4) * F L M$ 0998
WRITE OUTPUT TAPE 6.496,NR,NMC. TIME, SHVEL,PSHK, TRSHK, TTOE 0999
PUNCH 496. NR, NMC. TIME.SHVEL, PSHK, TRSHK, TTOE 1000
FORMAT(214.1PSE12.4) 1001
IF(LZ-40) 30.30.81 1002
WRITE OUTPUT TAPE NTAPE.4S.NMC.LZ,ETOTAL,TIME.POWER,DT,NTI. 1003
$1(K, R(K) \cdot U(K), P(K), D P(K), F M(K), U R(K), E(K), H P(K), H P P(K) \cdot D I V F A(K), T(K$ 1004
2).GM(K).PART(K). THETA(K).DZ(K).OTH(K).HZ(K),K=1.40) 1005WRITE OUTPUT TAPE NTAPE.47.1006
$1(K, R(K), U(K), P(K), D P(K), F M(K), U R(K), E(K), \operatorname{HP}(K), \operatorname{HPP}(K), D[V F A(K), T(K$ 1007
2),GM(K),PART(K).THETA(K).DZ(K).DTH(K),HZ(K),K=41.LZ) 1008
GO TO 85 1009
WRITE OUTPUT TAPE NTAPE, 45.NMC.LZ,ETOTAL,TIME,POWER.DT,NTI. 1010
$1(K, R(K), U(K), P(K), D P(K), F M(K), U R(K), E(K), H P(K), H P P(K), D I V F A(K), T(K$ 1011
2),GM(K),PART(K). THETA(K), DZ(K),OTH(K),HZ(K),K=1.LZ)). GM(K), PART(K). HETA(K).OZ(K).OTH(K).HZ(K).K=1.LZ) 1012
WRITE DUTPUT TAPE NTAPE, 46, PARTT,RJ,P03. TEFF,LZR,FLEX.RX,P34,TCOL. 1013
2NCW, BN(LZ), DTMIN.P45.CWL(NCW.1),MCP.ON(LZ),SAVEI.PS7.O41.EMS 1014 014
WRITE OUTPUT TAPE NTAPE,36.DPP(LZ),FBR,P71.Q71.NSZ.EAMB.RSHOCK.P47
1.047.NR
$W(1.9)=$ RSHOCK 1017DT=SAVE![F(NMC-1) 403.400.4001018
1019IF (NMC-10) 411.411.403

0971
0972
0973
0974097509760977097809790980098109820983098409850986098709880989990012
1015
10151016

1020

```
0970
```


403 CONTINUE 1021
C USER TAPE PRINT OUT 1022
URITE OUTPUT TAPE 32.300.NF.NMC.TIME.LZ.P(99).T(99).RHOZ(99).POWER 1023
2.P47.FBR. (K,R(K).U(K),P(K),UR(K).T(K).FOS(K),FIS(K).DMM(K).O(K). 1024
3F Z(K), E(K), $\operatorname{HPPP}(K), K=1, L Z)$ 1025
300 FGRMATC1H1.2I4, IPE12.3.15.IPGE12.3/(I4.1P12E10.3]) 1026
URITE OUTPUT TAPE 42.437.NR.NMC.TIME,T(1).TCOL,TEFF.ETOTAL,PARTT 1027
IBN(LZ). DN(LZ).ESYSM.EAMB,FLEX.041.047.071.P03.P34.P45,PS7.P71.P47, 1028
2FBR.RSHOCK 1029
437 FORMAT(IH.2I4.1P1OE11.3/1P12E11.4///) 1030
410 IF(NMC) 500.420.411 1031
411 IF(TIME-6.82E-05) 500.412.412 1032
412 NSIX=NSIX+1 1033
413 1F(NSIX-3) 500.420.500 1034
420 NSIX=0 1035
421 CALL SIXDPO 1036
500 RETURN 1037
END 1038

- FGRTRAN 1039
CFISIXD 1040
SUBROUTINE SIXDPO 1041
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1042
$F L A G=1.0 E+31$ 1043
SOUNDS = SQRTF (1.4*P(99)/RHOZ (99)) 1044
OO $10 \quad K=1 . L Z$ 1045
$B N(K)=P(K) / P(99)$ 1046
CN(K) $=V(99) / V(K)$ 1047
ON(K)=T(K)/T(99) 1048
EN(K)=U(K)/SOUNDS 1049
C AVERAGE ZONE RADIUS IN FEET 1050
$10 \quad D P(K)=(R(K)+R(K-1)) / 60.96$ 1051
WRITE TAPE 31.NR.TIME,LZ. $\operatorname{CDP}(K), B N(K), C N(K), D N(K), E N(K), G M(K)$. 1052
IK=1.LZJ.FLAG 1053
WRITE GUTPUT TAPE 41.50.NR.TIME.LZ.(OP(K).BN(K).CN(K).DN(K).EN(K). 1054
[GM(K),K=1,LZ) 1055
FORMAT(1HI/I4,X.27H SIXDPLJT DIAGNGSTICS TIME=1PE10.3.5X.3HLZ=14 1056
2///(1P6E16.4)) 1057
KZ6 $=$ K $26+1$ 1058
RETURN 1059
END 1060
FORTRAN 1061
CFIPHOTOG PHOTOGRAPHIC BRIGHTNESS ROUTINE 1062
SUBROUTINE PHOTOG 1063
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1064
IF (NMC) 32.30.32 1065
30 JTAPE $=25$ 1066
31 GO TO 40 1067
32 1F(NMC- 3) 33.33.30 1068
33 JTAPE=6 1069
40 CONTINUE 1070
C SOURCE FUNCTION EM(K) AND ABSORPTION COEFF BN(K) 1071

```
    DO 5 K=1.LZ 1072
    BN(K)= (V(K)/C
1073
    16.5*((1.293E-03*V(K))**1.15)/(((T(K)/11606.5)**8.0)+2.6E-12*V(K)) 1074
    2+0.180*((1.293E-03*V(K))**1.91)/((T(K)/11606.5)**(3.5)) 1075
    4+6.00E-05*((1.293E-03*V(K))*#2.0)*((T(K)/11606.5)**0.59) |076
    5+1.00E-09*((1.293E-03*V(K))**2.0)*((T(K)/11606.5)**4.00) ) ) 1077
    6#(1.0-EXPF(-3.2E+04/T(K))) 1078
    TEA=3.956E+04/T(K) 1079
    IF(TEA-80.0) 1.1.2 1080
    EM(K)=0.0 1081
    GO TO 5 1082
    EM(K)=1.0E+05/(EXPF(3.956E+04/T(K))-1.0) 1083
    CONTINUE 1084
1085
C OPTICAL DEPTHS
    OO 200 K=1.LZ 1087
1086
    DM(K)=0.0 1088
    DZ(K)=0.0 1089
    OP(K)=(R(K)+R(K-1))/2.0 1090
    LS=K 1091
    DO 100 L=LS.LZ 1092
    IF(L-K) 320,310,320 1093
310 DZ(L)=SORTF(R(L)**2-DP(K)**2)
    DM(L)=DZ(L) 1095
    GO TO 100 1096
    OZ(L)=SQRTF(R(L)**2-DP(K)**2)-DM(L-1) 1097
    DM(L)=DM(L-1)+DZ(L) 1098
    HZ(L)=EXPF(-BN(L)#OZ(L)/V(L)) 1099
    BRIGHTNESS INTEGRATION 1100
    HP(LZ)=0.0
    LS=LZ-K+1
1101
    OO }7\textrm{J}=1.L
    M=LZ-J
    HP(M)=HP(M+1)*HZ(M+1)+(1.0-HZ(M+1))*EM(M+1)
    LP(M)=HP(M+1)*HZ(M+1)+(1.0-HZ(M+1))*EM(M+1)
    OO 6 J=LS.LZ
    HP(J)=HP(J-1)*HZ(J)+(1.0-HZ(J))*EM(J)
                            IF(K-3) 155.150.155
    HNORM=HPP(3)
    IF(NMC) 155.151.155
    SCALE = HPP(3)*10.0
    CONTINUE
    HPPP(K)=HPP(K)/SCALE
    HPP(K)=HPP(K)/HNORM
    WRITE OUTPUT TAPE JTAPE,201,NMC,TIME,(K,OP(K).HPPP(K),HPP(K).K=1, 1117
    ILZ)
    FORMAT(1HI,GHPHOTOG, 14,10X,5HTIME =1PE10.3//5H ZONE,3X,6HMEAN R,4X.
    25HABS B,5X,5HREL B//(I6.IP3E|0.3)]
    120
    2SHABS B.SX.SHREL B/A(16.1P3EIO.3J) 1, 20
    RETURN 1121
    END
1122
```

- FGRTRAN 1123
CFIDIAG 1124
SUBROUTINE DIAGNS 1125
STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1126
35
FGRMAT $\operatorname{IHI}, 4 \mathrm{HNMC}=14,5 \mathrm{X}, 4 \mathrm{HNT} I=14,5 \mathrm{X}, 4 \mathrm{HKZ2}=15,5 \mathrm{X}, 5 \mathrm{HZONE}=14,5 \mathrm{X}, 4 \mathrm{HRUN}=$ 1127
214/) 1128
M=K25 1129
IF(KZ2) 5.10 .15 1130
WRITE OUTPUT TAPE 6.6.KZ2 1131
FORMAT(IHI.2IHDIAG CALLED FROM MAINIS) 1132
GO TO 20 1133
GRITE GUTPUT TAPE 6.11.KZ2 1134
10
FGRMAT (IHI.22HDIAG CALLED FROM CGSPOI5) 1135
GO TO 20 1136
15 WRITE OUTPUT TAPE 6.16.KZ2 1137
16 FORMAT(IHI.22HDIAG CALLED FROM HYDROIS) 1138
WRITE OUTPUT TAPE 6.21,NMC,NTI.LZ.LZR.MCP,MCL,TIME.OT,CS.CR,BR,RS. 1139
I(K.V(K),VR(K),E(K),ER(K),RESDUE(K),PA(K),DIVFA(K),DIVFR(K),K=I,LZ) 1140
FGRMAT $1 \mathrm{H}, 4$ HNMC $=I 4,2 \mathrm{X}, 4 \mathrm{HNT} I=14,2 \mathrm{X}, 3 \mathrm{HLZ}=I 4,2 \mathrm{X}, 4 \mathrm{HLZR}=14,2 \mathrm{I}, 4 \mathrm{HMCP}=14$ 1141
$1.2 \mathrm{X} .4 \mathrm{HMCL}=14 / 6 \mathrm{H} \quad \mathrm{T} I \mathrm{ME}=1 \mathrm{PE} 12.4,2 \mathrm{X}, 3 \mathrm{HDT}=1 \mathrm{PE} 12.4,2 \mathrm{X}, 3 \mathrm{HCS}=0 \mathrm{PF} 5.2 .2 \mathrm{X}$. 1142
 1143
312 X, IHE, 13 X . 2HER, 12 X . 6HRESDUE, $8 \mathrm{X}, 2 \mathrm{HPA}, 12 \mathrm{X}, 5 \mathrm{HDIVFA}, 9 \mathrm{X}$. 5HDIVFR// 1144
4(I4, 1P8E14.7)) 1145
URITE OUTPUT TAPE 6,23,NMC.NTI.DTMIN,YIELD, SCALE.TFLUX,FBR.TIMEW. 1146
I(K.T(K), DTM(K), DET(K), DPT(K), BN(K),CN(K), DN(K), EN(K),K=1,LZ) 1147
FORMAT 1 HI, 4 HNMC $=I 4,2 X, 4 H N T I=I 4,2 X, 6 H D T M I N=I P E 12,4,2 X, 6 H Y I E L D=\mid P E I$ 114812.4.2X.6HSCALE $=1$ PE12.4. $2 \mathrm{X} / 7 \mathrm{H}$ TFLUX $=1$ PE $12.4,2 \mathrm{X}, 4 \mathrm{HFBR}=1 \mathrm{PE} 12.4,2 \mathrm{X}, 6 \mathrm{HT}$
1149
$21 M E W=1 P E 12.4 / / 3 H \quad K, 6 X, 1 H T, 13 X, 3 H D T M, 11 X, 3 H D E T, 11 X, 3 H D P T, 11 X, 2 H B N$. 1150
$312 \mathrm{X}, 2 \mathrm{HCN}, 12 \mathrm{X} .2 \mathrm{HDN}, 12 \mathrm{X} .2 \mathrm{HEN} / /(14.1 \mathrm{PQE}$ 14.7)) 1151
URITE OUTPUT TAPE 6.35.NMC.NTI.KZ2.M.NR 1152
RITE OUTPUT TAPE 6.25.(K.FOS(K).FIS(K).BB(K.1).BC(K.1).R(K). 1153
1ZO(K,1).A(K.1).ZI(K,1),K=1,LZ) 1154
FORMAT(1H /3H K,6X,2HFO,12X,2HFI,12X,2HBB. $12 \mathrm{X}, 2 \mathrm{HBC}, 12 \mathrm{X}, 1 \mathrm{HR}, 13 \mathrm{X}$. 1155
 1156
WRITE OUTPUT TAPE 6.35,NMC,NTI,KZ2,M,NR 1157
WRITE OUTPUT TAPE 6.27.(K,S(K.1).W(K,1).DTAU(K.1).R2(K), ZMAS(K). 1158
1 TAU(K,1).CWL(K.1), TR(K),K=1.LZ) 1159
FGRMAT(1H /3H K.6X.1HS,13X.1HW,13X.4HDTAU,10X,2HR2,12X,4HZMAS.10X 1160
1.3HTAU. 11 X, 3HCWL. $11 \mathrm{X}, 2 \mathrm{HTR} /(14,1 \mathrm{PBE} 14.7$)) 1161
URITE UUTPUT TAPE 6.35. NMC.NTI,KZ2,M,NR 1162
URITE OUTPUT TAPE 6.29,(K.DMM(K),DM(K).DZ(K),DP(K).DPP(K),Q(K). 1163
1FO(K,2),FI(K,2),K=1,LZ) 1164
FORMAT(1H/3H K,6X,3HOMM,11X,2HDM,12X,2HDZ. $12 \mathrm{X}, 2 \mathrm{HDP}, 12 \mathrm{X}, 3 \mathrm{HDPP}, 11 \mathrm{X}$ 1165
1, 1HO. 13X, 5HFOTJZ, 9X, 5HFITJZ/(14.1P8E14.7) 1166
URITE OUTPUT TAPE 6.35.NMC.NTI,KZ2.M.NR 1167
WRITE OUTPUT TAPE 6.31, (K,FMM(K),FM(K),FZ(K),HZ(K),FP(K),HP(K), 1168
1HPP(K).HPPP(K),K=1,LZ) 1169
FGRMAT(1H/3H K,6X,3HFMM,11X,2HFM,12X,2HFZ,12X,2HHZ,12X,2HFP,12X. 1170
12 HHP, $12 \mathrm{X}, 3 \mathrm{HHPP}$. $11 \mathrm{X}, 4 \mathrm{HHPPP} /([4$, (P8E14.7)) 1171
WRITE GUTPUT TAPE 6.35.NMC.NTI,KZ2,M,NR 1172
WRITE OUTPUT TAPE 6.33, TON2,TDO2.TIMES.047,071.FLIX.FLOX.FLEX. 1173
32 IRM,RX.RJ, (K,FO(K,3), DTR(K),RZ(K),P(K),DE(K),RR(K),RHOZ(K), U(K). 1174
32 $2 K=1.100)$ 1175
33

 FORMAT(1H , 2X, 5HTON2=1PE12.4.2X, 5HTOO2=1PE12.4.2X.6HTIMES=1PE12.4.
 1176
 $12 \mathrm{X}, 4 \mathrm{HQ47}=1 \mathrm{PE} 12.4,2 \mathrm{X}, 4 \mathrm{HQ71}=1 \mathrm{PE} 12.4,2 \mathrm{X} / 6 \mathrm{H}$ FLIX $=1 \mathrm{PE} 12.4,2 \mathrm{X}, 5 \mathrm{HFLOX}=1 \mathrm{PE}$
1177
212.4.2X. SHFLEX $=1$ PE 12.4.2X.3HRM $=1$ PE 12.4.2X. 3 HRX $=1 \mathrm{PE} 12.4 .2 \mathrm{X}, 3 \mathrm{HRJ}=1 \mathrm{PE} 1178$
312.4/13H K.6X,3HDTH. $11 \mathrm{X}, 3 \mathrm{HOTR}, 11 \mathrm{X}, 2 \mathrm{HRZ}, 12 \mathrm{X}, 1 \mathrm{HP}, 13 \mathrm{X}, 2 \mathrm{HDE}, 12 \mathrm{X}, 2 \mathrm{HRR}$.
412X.4HRHOZ.10X.2HU/(14.1P8E14.7))
RE TURN
END
- FORTRAN
CFIFLUX
SUBROUTINE FLUXS

C	STANDARD OIMENSION AND CGMMON STATEMENTS AS IN MAIN PROGRAM	1185

$500 \quad$ LZM1 $=\mathrm{LZ}$ Z-
DO 530 N=1.NSZ
C BOUNDARY CONDITION NO INWARD FLUX AT OUTER BOUNDARY
$F I(L Z . N)=0.0$
1179
1180
1181
1182
1183
510 DO $512 \mathrm{~J}=1$, LZMI 1191
$511 \quad k=L Z-J$
1184
1185
1191
$\begin{array}{lll}511 & K=L Z-J \\ 512 & F I(K, N)=F I(K+1 . N) * Z I(K+1 . N)+B B(K .1) *(A(K+1, N))-2.0 * S(K, N) * W(K+\quad 1192 \\ & 1193\end{array}$
512 11.N)
1193
1194
$520 \quad F O(1 . N)=F I(1 . N)+Z I(1 . N)+B B(1.2) *(A(1, N))+2.0 * S(1 . N) * W(1 . N) \quad 1195$
$\begin{array}{lll}520 & F O(1 . N)=F(1, N) * 21(1 . N)+B B(1.2) *(A(1, N))+2.0 * S(1 . N) * W(1 . N) & 195 \\ 522 & D O & 196\end{array}$
525 FO(K.N $)=F O(K-1, N) *(R 2(K-1) / R 2(K))=Z O(K, N) 1197$
$525 \quad 2+B B(K, 2) *(A(K, N))+2.0 * S(K, N)+W(K, N) \quad 1198$
$525 \quad 3+(1.0-(R 2(K-1) / R 2(K)))=F I(K, N)+Z I(K, N) \quad 1199$
530 CONTINUE 1200
549 DO S5S K=1,LZ 1201
FIS $(K)=0.0$
1202
$\operatorname{FOS}(K)=0.0$
1203
$\begin{array}{ll}\text { OO S5O } & \text { N }=1 \text {.NSZ } \\ 1203\end{array}$
FIS(K)=FIS(K)+FI(K.N) $\quad 1205$
550 FOS $(K)=F O S(K)+F O(K \cdot N) \cdot 1206$
551 IF(K-1) 552.552.554
1207
$55201=0.0 \quad 1208$
$552 \quad 01=0.0$
553 GO TO 555 1209
1208
$554 \quad 01=1.0$
1210
555 OIVFA(K)=(R2(K)/ZMAS(K))\#(FOS(K)-FIS(K)) 1211
555 1-D1*(R2(K-1)/ZMAS(K))*(FOS(K-1)-FIS(K-1)) 1212
541 FLOX=12.56*R2(LZ-3)*FOS(LZ-3) 1213
590 RETURN 1214
591 END 1215
1216

* FORTRAN 1217
CFISTE
1217
$\begin{array}{ll}\text { SUBROUTINE STATE } & 1219\end{array}$
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1220
- 1221
C STEFAN =2.514E-09 TO INCLUDE RADIATION ENERGY AND PRESSURE 1222
C STEFAN $=0.00$ TO DELETE RADIATION ENERGY AND PRESSURE 1223
STEFAN $=0.0$
1224
100 DO $126 K=1 . L Z$ 1225
$E T A(K)=1.0 /(1.293 E-03$ E $V(K))$ 1226
102 K K) $=$ IS(K) $1.0 \mathrm{E}-04$ 1227103
$X S(K)=1.0 E+04=T S(K) /(E T A(K) * * 0.086)$ 1228
GNU(K) $=\operatorname{LOGF}(X S(K) / 2000.0) / L O G F(1250.0)$ 1229
IF(XS(K)-2000.0) 106.106.108 1230
PART $(K)=1.0$ 1231
GO TO 112 1232
IF $(X S(K)-2.5 E+06) \quad 109.111 .111$ 1233
PART $(K)=1.0+15.4+(G N U(K) * * 3) *(4.0-3.0 * G N U(K))$ 1234
GO TO 112 1235
PART (K) = 16.4 1236
$P(K)=(2.881 *(T S(K) / V(K)) * P A R T(K)+S T E F A N *(T S(K) * *)) * 1.0 E+10$ 1237
$Y=0.0784 /(2.881 * T S(K) * P A R T(K))$ 1238
$U Z=1.0+(27.0 \# Y+3.0) /(5.0 * Y+1.0)+861.0 *(1.0-Y) * Y /(3000.0 *(Y * \# 2)+1.0$ 1239
$1)+(2356.0 *(1.0-Y) * Y) /(9.0 E+04 \#(Y * \# 2)+1.0)+(41000.0 *(1.0-Y) * Y) /$ 1240
2(12.0E+06\#(Y**2)+1.0)+(2.15E+05*(1.0-Y)*Y)/(1. 5E+18*(Y**4)+1.0) 1241
UT $=(24.0 *(Y * * 2)+4.0 E-10) /(4 . *(Y * * 2)+1 . E-10)-(0.0970 *(Y * 2) *(1.0-Y)$ 1242
$1) /(2.0 E-06+Y * * 3)+(4.18 E-05 *(Y * * 3) *(1.0-Y)) /(1.14 E-11+Y * * 6)$ 1243
UC=UZ-0.09*(UZ-UT)*LOGF (ETA(K)) 1244
$E(K)=(0.03920 *(U C-1.0) / Y+3.0 * S T E F A N *(T S(K) * * 4) * V(K)) * 1.0 E+10$ 1245
$T S(K)=T S(K) * 1.0 E+04$ 1246
TS(2)=TS(2)*1.0E-04 1247
TS(1)=TS(1)*1.OE-04 1248
$P(1)=(0.538 E+10 * T S(1) * * 1.5) / V(1)$ 1249
$E(1)=2.53 E+10 *(((V(1) * * 0.25)+10.0) /(3.0 * V(1) * * 0.5+10.0)) *$ 1250
$1((V(1) * * 0.25)+0.13) *(T S(1) * * 1.5+.02722 / V(1) * * 1.5)$ 1251
P(2)=36.18*TS(2)*1.0E+10*(920.0+TS(2)**2)/(V(2)*(TS (2)**2+1.08E+04 1252

1) 1253
$E(2)=((649.0+T S(2) * * 2) /(100.0+T S(2)))$ 1254
$1 *((82.7 * T S(2) * 1.0 E+10) /(116.0 /(V(2) * * 0.25)+T S(2) *(1.0+0.12 /(V(2) * *$ 1255
20.25)]) 1256
$T S(1)=T S(1)+1.0 E+04$ 1257
TS(2) $=T S(2) * 1.0 E+04$ 1258
176 RE TURN 1259
177 END 1260
FORTRAN 1261
CF 1 HYDO1262
SUBROUTINE HYDRG 1263
C STANDARD DIMENSIGN AND COMMON STATEMENTS AS IN MAIN PROGRAM 12641265
$K H R=0$ 1266
$K R S=1$ 1267
$K Z 4=0$ 1268
C TEST FOR IMPROPER CONVERGENCE 1269
DO $195 K=1 . L Z$ 1270
[F(DTM(K)] 192.195.191 1271
191 IF(T(K)-2,0E+05) 188.188.189 1272
188 IF(ABSF (OTM(K))-4.99*T(K)) 195.195.193 1273
189 IF (ABSF (OTM(K))-0.80*T(K)) 195.195.193 1274
192 IF(ABSF(DTM(K))-0.25*T(K)) 195.195.193 1275
$\begin{array}{lll}193 & K 22=193 & 1276\end{array}$
$R O X=R Q X=0.2 \quad 1277$
RM=RQX:1.3 1278
CALL DIAGNS 1279
194 GO TO 198
1280
195 CONTINUE 1281
198 IF(RQX) 199.199.200
1282
198
199
C RICHTMYER - VON NEUMANN HYDRODYNAMIC SCHEME C ADVANCE VELOCITY - - CHOOSE TIME STEP
200 DO $207 \mathrm{~K}=1 . \operatorname{LZ}$
$V(K, 3)=U(K)$
UR(K)=U(K)
$U(K)=U(K)-2.0 *((R 2(K) \quad-O T) /(Z \operatorname{MAS}(K)+Z M A S(K+1) J) *(P(K+1)+Q(K+1) \quad 1289$
$1-P(K)-Q(K)] \quad 1290$
IF(U(K)-1.0E+11) 207.210.210 1291
CONTINUE 1292
$U(L Z)=0.0 \quad 1293$
GO TO 217 1294
$K Z 2=210$ 1295
CALL DIAGNS 1296
CALL OIAGNS
C HYDRODYNAMIC TIME STEP - - CQURANT CRITERION 1298
217 RM=RQX*1.3 1299
218 IF (RM-0.070*TME 222.222 .2191300
219 RM=0.070*TIME 1301
222 DO 227.K=1.LZ 1302
224 OTH $(K)=\operatorname{DR}(K) /(R S * S Q R T F(P(K) /(V(K) *(R H O Z(K) * * 2)))) 1303$
$\operatorname{DTH}(K)=D T H(K) *((R Z(K) / R(K)) * * 2) 1304$
FO(K, 3) $=$ DTH(K)
1305
IF(RM-DTH(K)) 227.226.226 1306
RM=DTH(K) 1307
KZ4 = K $\quad 1308$
CONTINUE 1309
RJ = RM 1310
RADIATION LIMITED TIME STEP $\quad 1312$
1311
229 RX=RM 1313
230 DC 242 K=KRS.LZ
IF (K-1) 233.233.223
IF(R(K)-FBR) 231.231.233 1316
229 RX=RM 1313
1315
$\begin{array}{lll}223 & I F(R(K)-F B R) & 131.231 .233\end{array} 1317$
$\begin{array}{lll}223 & I F(R(K)-F B R) & 131.231 .233\end{array} 1317$
231
$\begin{array}{ll}232 \text { GO TO } 234 \\ 233 \text { AR }=\text { BR } & 2.0\end{array}$
1318

233 AR=BR*2.0

 1319
 CONTINUE 1320
234$\operatorname{DTR}(K)=A B S F(A R * E(K) / D \operatorname{IVFA}(K))$1321
[F(DTR(K)-DTMIN) 242.242.239 1322

IF(DTR(K)-RX) 240.240.242

IF(DTR(K)-RX) 240.240.242 1323 1323
$R X=D T R(K)$
$R X=D T R(K)$ 1324 1324
239
239
1325
241 KZ4=K 1326
243 RM=RX 1327
244 IF(RM-2. O.DT) 246.246.245 1328
245 $R M=2.0 \pm D T$ 1329
246 IF(RM-DTMIN) 247.248.248 1330
247 1331248249
RQX=RM1332
1333250 IF (NMC-4) 252.252.251
251 RM=TIMEW-TIME 13351334
252 DO 255 L=1.LZMI
252 OU 255 L=1.L2MI 1336
$253 U A(L)=(U(L) / 2.0)+(U R(L) / 2.0)+(U(L) * R M) /(2.0 * D T)-(U R(L) * R M) /(2 . * D T)$ 1337
254 $\operatorname{UR}(L)=(U(L) / 2.0)+(U R(L) / 2.0)-(U(L) * R M) /(2.0 * D T)+(U R(L) * R M) /(2 . * D T)$ 1338
255 U(L)=UA(L) 1339
256 DT=RM 1340
C ADVANCE RADIUS ALL L 1341
260 DO 263 L=1.LZ 1342
$W(L .5)=R(L)$ 1343
$261 \quad R(L)=R(L)+D T E(L)$ 1344
262 RR(L)=R(L)/RZ(L) 1345
263 R2(L)=R(L)**2 1346
$00269 K=2 . L Z$ 1347
IF ($(R(K)-R(K-1))-0.15) \quad 264.264 .269$ 1348
264 KHR = KHR + 1 1349
IF(KHR-3) 265.265.270 1350
$265 \quad K Z 2=266$ 1351
266 CALL DIAGNS 1352
DO 268 L=1.LZ 1353
$U(L)=W(L, 3)$ 1354
$R(L)=W(L, 5)$ 1355
268 CONTINUE 1356
$R O X=D T * 0.2$ 1357
GO TO 200 1358
269 CONT INUE 1359
C ADVANCE SPECIFIC VOLUME 1360
$270 \quad V(1)=((R(1) * * 3) /(R Z(1) * * 3)) / R H O Z(1)$ 1361
271 DO $277 K=2 . L Z$ 1362
$273 V(K)=(1.0 / R H O Z(K)) *(((R(K) / D R(1)) * * 3)-((R(K-1) / D R(1)) * * 3)) /$ 1363
274 1(((RZ(K)/DR(1))**3)-((RZ(K-1)/DR(1))**3)) 1364
275 IF $V(K)-1.0 E+20) \quad 276.279 .279$ 1365
276 IF(V(K)) 279.279.277 1366
277 CONTINUE 1367
278 GO TO 283 1368
$279 \quad K Z 2=279$ 1369
CALL DIAGNS 1370
282 GO TO 52 1371
C ADVANCE ARTIFICAL VISCOSITY 1372
283 IF(NMC-NOS) 284.284.286 1373
$284 \quad V D=C S$ 1374
285 GO TO 287 1375
286 $V D=C R$ 1376
287 OO 295 K=1.LZ 1377
[F(V(K)-VR(K)] 293.2942,2942 1378
293 1379
12) 1380
294 IF(O(K)-1. OE +22) 2941.298.298 1381
2941 IF (O(K)) 2942.295.295 1382
$2942 \quad O(K)=0.0$ 1383
295 CONTINUE 1384
$296 \quad O(L Z)=0.0$ 1385
297 RE TURN :386298
K22=298 1387
CALL DIAGNS 1388
52 URITE GUTPUT TAPE 6.43.T(1) 1389
43 FGRMAT(1H . ISHEXIT FROM HYDRO,5X,5HT(1)=1PE13.6) 1390
$T(1)=0.000000$ 1391
1500 GO TO 297 1392
END 1393
1394

- FORTRAN 1395
CF ICOEF 1396
SUBRGUTINE COEFF 1397
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1398
700 LZR=LZR 1399
C SET FLUX DERIVATIVES NEAR OUTER BOUNDARY OF RADIATIVE REGION 1400
$701 \quad F P(L Z R)=0.0$ 1401
$702 \quad H P(L Z R)=0.0$ 1402
$703 \quad \operatorname{HPP}(L Z R)=0.0$ 1403
$704 \operatorname{HPPP}(L Z R)=0.0$ 1404
$705 \operatorname{HPP}(L Z R-1)=0.0$ 1405
$706 \operatorname{HPPP}(L Z R-1)=0.0$ 1406
$707 \operatorname{HPPP}(L Z R-2)=0.0$ 1407
DO $769 \mathrm{~J}=1 . \operatorname{LZR}$ 1408
C SET RIPPLE ZONE PARAMETERS 1409
DO $514 \quad N=1$,NSZ 1410
SAVE1=BB(J.N) 1411
SAVE2=BB(J-I,N) 1412
SAVE3=S(J,N) 1413
SAVE4=S(J-1,N) 1414
SAVES=DTAU(J,N) 1415
SAVEG=A(J.N) 1416
SAVET=W(J,N) 1417
SAVEB=ZI(J.N) 1418
SAVE = = I ($\mathrm{J}-1 . \mathrm{N}$) 1419
SAVE10=ZO(J.N) 1420
SAVEII=ZO(J+I,N) 1421
SAVE12=BC(J.N) 1422
SAVE14=T(J) 1423
SAVE13=TS(J) 1424
SAVE $15=$ CWL(J.1) 1425
SAVE16=20(J+2,N) 1426
SAVE17=8B(J.2) 1427
SAVE1日=BB(J-1.2) 1428

```
31! BB(J.N)=((( ((R(J+1)-R(J))*TP(J)*!4)+((R(J)-R(J-1))=T(J+1)**4))/ 1429
311 1(R(J+1)-R(J-1))))=5.67E-05 1430
    BB(J-1,N)=(C(((R(J)-R(J-1))*T(J-1)**4)+((R(J-1)-R(J-2))*TP(J)**4)) 1431
    1/(R(J)-R(J-2)) j)*S.67E-05 1432
        B8(J-1.2)=BB(J-1.1) 1433
        BB(J.2)=BB(J.1) 1434
312 BC(J.N)=5.67E-05#(TP(J)**4) 1435
    TS(J)=TP(J)/11606.5
    T(J)=TP(J)
    ALPHA=9.0+EXPF(-TIME/1.OE-03*(ETA(J)**2))
    BETA=((6.0E-18*V(J))**0.5)*(TS(J)**0.1)
    Zl(J.l)=EXPF(-1.5*(R(J)-R(J-1)) /(CETA(J)**I.S)/(CTS(J)**ALPHA) 1441
    2+BETA) +0.2*(ETA(J)**1.91)/(TS(J)**2.73)
    3+0.023*(ETA(J)* & % (TS(J)**0.25)+1.0E-07*(ETA(J)**2.0)/1443
    4((TS(J)*#(-5.0))+4.0E-14#V(J))))
        ZI(J.1)=ZI(J.1)*0.99999998
        ZI(J.2)=ZI(J.1)
        1446
        HMFP=(ETA(J)**1.5)/((TS(J)*#ALPHA)+BETA) 1447
    1+0.2*(ETA(J)**1.91)/(TS(J)**2.73) 1448
    2*0.023*(ETA(J)**1.8)*(TS(J)**0.25)
    3+1.0E-07*(ETA(J)**2.0)*(TS(J)**5.00)
        HMFF=9.3E-06*(ETA(J)**2.0)*(TS(J)**3.5)
        IF(TS(J)-10.0) 301.298.298
        IF(HMFF-HMFP) 299.301.301
        -1453
        HMFP=HMFF 1454
        DTAU(J.1)=1.5*(R(J)-R(J-1) /HMFP 1455
        A(J,N)=EXPF(-DTAU(J,N)) 1456
        TS(J)=TP(J) 1457
        S(J,N)=(BC(J,N)-BC(J+1,N))/(DTAU(J,N)+DTAU(J+1,NJ) 1458
        S(J-1,N)=(BC(J-1,N)-BC(J,N))/(DTAU(J-1,N)+DTAU(J,N))
        S(J-1,N)=(BC(J-1,N)-BC(J,N)
        IF(W(J.N)-1.0E-04) S09.514.514 1461
        W(J,N)=0.5*(DTAU(J.N)**2) 1462
        CONTINUE 1463
        M,}146
        SET CUTOFF WAVELENGTHS 1465
    I=J
        IF(T(I)-TDN2) 546,542.542
    C OPACITY DUE TO ATOMIC SPECIES
542 CWL(I.1)= 700.0#EXPF(-0.36*(T(I)-11606.5)/11606.5)
    IF(CUL(I.1)-275.0) 545.560.560 1471
    IF(CWL(I.1)-275.0) 545.560.560 1471
545 CWL(I,1)=275.0 1472
    GO TO 560 1473
546 IF(T(I)-TOO2) 551.547.547 1474
C OPACITY DUE TO N2 MOLECULE 
1475
547 TCN2=5. OE-07*1.293E-03*V(I) 1477
    CWL(I.1)=1140.0*(((R(I)-R(I-1))/(V(I)*1.293E-03))**0.11) 1478
    1.(1.0-EXPF(-TIME/TCN2))}147
```

IF(CWL(I.1)-1000.0) 550.560.560 1480TC=4250.0-271.0~LOGF (1.293E-03:V(1))TCO2=3. OE-07:1.293E-03*V(I)553 IF (T(I)-TC)554.554.556554 CWL (1.1)=1500.0+TS(1)*(0.163+0.0745*LOGF(DR(I)*RHOZ(I)/1.293E-03))
554 1^(1.0-EXPF (-TIME/TCO2))555556
c calculate zo values 1497$20(1,1)=21(1.1)$604 JSTR $=\mathrm{J}+2$KD=0
60500670 L=J.JSTR$T R(L)=T(L)$
1481
0 1482
GO TO 560 1483

C opacity due to 02 molecule 551 48414851486
GO TO 557 1490TSB $=\operatorname{TS}(1) *(.0647 * \operatorname{LOGF}(R(1)-R(1-1))-0.25-.109 * \operatorname{LOGF}(1.293 E-03 * V(1)))$14871488
CWL (I, 1) $=3500.0+$ TSB-($2000.0+$ TSB $)$ EXPF (- TIME/TCO2)
IF (CWL(1.1)-1500.0) 558.560.560 14921491
$\operatorname{CWL}(1,1)=1500.0$ 1494
CONTINUE 1495
1496
1499
15001501
JF(T(L)-8. OE +04) 607.668.668
$K D=K D+1$ 1503
607 1504
IF(KD-1) 608.608.609 1505
608 MS=L-1 1506
609 IF(OTAU(L.1)-1.0) 610.668.668 1507
C SELECT TR(L) = TEMPERATURE OF RADIATION TRAVERSING ZONE L 1508
610 LIM=L-1 1509
611 TAUSUM=0.0 1510
615 DO 630 NN=1.LIM 1511
$616 \quad M=L-N N$ 1512
617 TAUSUM=TAUSUM+DTAU(M.1) 1513
620 IF(TAUSUM-0.7) 630.627.627 1514
$627 \quad T R(L)=T(M)$ 1515
628 IF(M-2) 630.630.638 1516
630 CONTINUE 1517
IF(T(L)-2500.0) 631.632.632 1518
$631 \operatorname{TR}(L)=\operatorname{TR}(L-1)$ 1519
GO TO 6371520
632 EPTSUM $=0.0$ 1521
EPSUM $=0.0$ 1522
DO 635 I =3.LIM 1523
EPTSUM=EPTSUM+T(1)*OTAU(1,1) 1524
EPSUM $=$ EPSUM + DTAU (1.1) 1525
IF(T(I)-2500.0) 636.636.635 1526
635 CONTINUE 1527
636 TR(L)=EPTSUM/EPSUM 1528
637 M=2 1529
$638 \quad I Z=M+1$ 1530

```
639 DO 646 I=1Z.L 1531
    640 IF(TR(L)*CHL(I.1)-2.0E+08) 641.641.644 1532
    IF(TR(L)*CHL(I.1)-2.0E+08) 641.641.644 1532
    ZI(I.2)= EXPF((-3.41E-08*CWL(I.1)*TR( L ) +2.5E-25*(CCWL(I.1)*TRCL 1533
    2))**3) =EXPF(-3.07E+13/((CWL(I.1)ETR( L ))**1.8)))
    GO TO 646 1535
644 2I(I.2)=7.6IE+22/((CWL(I.1)*TR(CL J)**3) 1536
646 CONTINUE : i537
    ZMAX=ZI(M+1,2) 1538
    ZO(L.1)=ZI(M+1,2) 1539
    IF(L-M-1) 668.663.650 :540
    CORRECTION FOR IMTERMEDIATE ZUNES i541
    IZ=M+2 1542
    CWLTST=CWL(M+1.1) 1543
    DO 660 NZ=IZ.L 1544
    IF(CWL(NZ.1)-CWLTST) 654.654.657 1545
    IF(NZ-L) 660.655.668 1546
    ZO(L.1)=1.0 . 1547
    GO TO 660 1548
    ZO(L.1)=ZI(NZ,2)/ZMAX 1549
    CMLTST=CWL(NZ,1) 1550
    ZMAX=ZI(NZ.2) 1551
    CONTINUE 1552
    IF(ZO(L.1)-ZI(L.1)) 670.668.668 1553
    ZO(L.1)=ZI(L.1) 1554
    CONTINUE 1555
    IF(DTAU(J.1)-1.OE-04) 672.674.674 1556
    A(J.1)=DTAU(J.1) 1557
    GO TO 675 1558
    A(J.1)=1.0-A(J.1) iS59
    IF(S(J.1)-1.69E+38) 8675.8675.677 1560
    IF((BB(J.1)*A(J+1.1)-2.0*SIJ.1)*W(J+1.1))-BC(J+1.1)*A(J+1.1)*0.01) 1561
    8675 1 677.680.680 1562
    677 S(J.1)=0.0 1563
    678 BB(J.1)=BC(J+1,1) 1564
    679 BB(J.2)=BC(J.1) 1565
    680 IF(S(J-1.1)-1.69E+38) 8680.8680.681 1566
    8680 IF([BB(J-1.1)*A(J.1)-2.0*S(J-1.1)*W(J.1))-BC(J.1)*A(J.1)*0.01)
    8680 1 681.684.684 1568
    681 S(J-1.1)=0.0 1569
    682 BB(J-1.1)=BC(J.1) 1570
    683 BB(J-1.2)=BC(J-1.1) 1571
    684 IF(J-2) 900.900.916 1572
    IF(BC(1.1)-BC(2.1)) 915.916.916 1573
    IF(J-2) 900.900.916 1572
    BB(1.2)=BC(1.1) 1574
    T(J)=SAVE14 1575
    CWL(J.1J=SAVE15 1576
C CALCULATE TEMPORARY FLUXS 1577
83I JSTR=J+2 1578
832 IF(JSTR-LZR) 834.834.833 1579
833 JSTR=LZR 1580
834 DO 842 N=1,NSZ 1581
```

```
835
836
837
838
838
839
839
840
841
841
841
842
C
726
727
7 2 8
7 2 9
7 3 0
731
732
F1TJM2=0.0
    FITJM3=0.0
    DG 742 N=1,NSZ
    FOTJP2=FOTJP2 + FOT(J+2,N). 1604
    FOTJPI=FOTJP1 + FOT(J+1.N) 1605
    FOTJZ=FOTJZ + FOT(J.NJ 1606
    FOTJMI=FOTJM1 + FOT(J-1,N), 1607
    FITJZ=FITJZ + FIT(J.N) 1608
    FITJMI=FITJMI + FIT(J-1.N) 1609
    FITJM2=FITJM2 + FIT(J-2.N) 1610
    FITJM3=FITJM3 + FIT(J-3.N) 1611
    FO(J,2)=FOTJZ 1612
    FI(J.2)=FITJZ 1613
    CALCULATE FLUX OERIVATIVES
    IF(J-LZR+1) 744.745.746
    FMM(J+2)=(FOTJP2 -FOS(J+2))/(TP(J)-T(J)) 1616
    FM(J+1)=(FOTJP1-FOS(J+1))/(TP(J)-T(J)) 1617
    FZ(J)=(FOTJZ-FOS(J))/(TP(J)-T(J)) 1618
    HZ(J)=(FITJZ-FIS(J))/(TP(J)-T(J)) 1619
    IF(J-1) 755.755.749 1620
    FP(J-1)=(FOTJM1 -FOS(J-1))/(TP(J)-T(J)) 1621
    HP(J-1)=(FITJM1-FIS(J-1))/(TP(J)-T(J)) 1622
    IF(J-2) 755.755,752 1623
    HPP(J-2)=(F[TJM2-F[S(J-2))/(TP(J)-T(J)) 1624
    IF(J-3) 755,755,754 1625
    HPPP(J-3)=(FITJM3-FIS(J-3))/(TP(J)-T(J)) 1626
    RETURN RIPPLE ZONE PARAMETERS TO NORMAL VALUES 1627
    OO 768 N=1,NSZ 1628
    BB(J,N)=SAVE I
    1629
    BB(J-1,N)=SAVE2 1630
    S(J,N)=SAVE3
1631
    S(J-1,N)=SAVE4 1632
```

```
    DTAU(J.N)=SAVES 1633
    A(J.N)=SAVEG 1634
    M(J.N)=SAVE7
1635
    ZI(J,N)=SAVE8
        1636
    Zi(J-1.N)=SAVE9 1637
    ZO(J.N)=SAVE1O
        1638
    ZO(J+1,N)=SAVE11 1639
    BC(J,N)=SAVE12
        1640
    TS(J)=SAVE13 1641
    ZO(J+2,N)=SAVE16 1642
    BB(J.2) =SAVE 17
        1643
    BE(J-1,2)=SAVE18 1644
    CONTINUE
    CONTINUE
768
C GENERALIZED COEFFICIENT ROUTINE DEC 6,1963 1647
770 DO 789 K=1.LZR
771 [F(K-1) 772.772.775
    DMM(1)=0.0
    DI=0.0
    DM(1)=0.0 1652
    GO TO 780 1653
    DI=1.0 1654
    IF(K-2) 777.776.778 1655
7 7 6
77
778
78
779 DM(K)= (0.5*R2(K)/ZMAS(K))#FM(K)
    GO TO 779 1657
1656
    DMM(K)=(0.5*R2(K)/ZMAS(K))*FMM(K)
1658
    I-DI#(0.S#R2(K-1)/ZMAS(K))&FM(K-1)
779 DM(K)= (0.5*R2(K)/ZMAS(K))*FM(K)
1660
779 1-DI*(0.S*R2(K-1)/ZMAS[K))*(FZ(K-1)-HZ(K-1)) 1661
780 DZ(K)= (0.5*R2(K)/ZMAS(K))*(FZ(K)-HZ(K)) 1662
780 1-DI*(0.5*R2(K-1)/ZMAS(K))*{FP(K-1)-HP(K-1)) 1663
780 2+(DET(K)/DT)+(DPT(K)/(2.*DT))*(V(K)-VR(K)) 1664
781 DP(K)= (0.5*R2(K)/ZMAS(K))*(FP(K)-HP(K))
1665
781
    1-D1*(0.5*R2(K-1)/ZMAS(K))*(-HPP(K))
    1666
782 DPP(K)=(0.5*R2(K)/ZMAS(K))*(-HPP(K))
782 1-D1*(0.5#R2(K-1)/ZMAS(K))*(-HPPP(K-1))
1667
1668
789 CONTINUE 1669
789 CONTINUE 
    OP(LZR)=0.0 1671
791 DP(LZR)=0.0
792 DPP(LZR)=0.0 1672
C BLOCK BOO SOLUTION OF MATRIX 
```



```
801 DN(1)=DPP[1)/DZ(1) 1675
802 EN(1) =-RESDUE[1)/DZ(1)
1676
803 BN(2)=DZ(2)-DM(2)*CN(1) 1677
804 CN(2)=(DP (2)-DM(2)*DN(1))/BN(2)
1678
805 DN(2)=\operatorname{DPP}(2)/BN(2)
1679
806 EN(2)=-(RESDUE (2)+DM(2) ENN(1))/BN(2)
1680
00 811 K=3.LZR
    OO 811 K=3.LZR 1681
    OO 811 K=3.LZR 1681
808
    808 BN(K)=(DZ(K)-DM(K)*CN(K-1)-DMM(K)*DN(K-2)+DMM(K)*CN(K-2)*CN(K-1)) 1682
    CN(K)=(DP(K)-DM(K)*DN(K-1)+DMM(K)#CN(K-2)#DN(K-1))/BN(K)
809
1683
```

$810 \quad \operatorname{DN}(K)=\operatorname{DPP}(K) / B N(K)$ 1684
811 $E N(K)=-(R E S D U E(K)+D M(K) * E N(K-1)-D M M(K) * C N(K-2)+E N(K-1)+D M M(K)=E N(K$ 1685
811 1-2) $/$ /BN(K)1686
812 DN(L2R-1)=0.0 1687
813 BN(LZR)=DM(LZR)-DMM(LZR) \#CN(LZR-2) 1688
$814 C N(L Z R)=(D Z(L Z R)-D M M(L Z R)=D N(L Z R-2)) / B N(L Z R)$ 1689
$815 \quad D N(L 2 R)=0.0$ 1690
816 EN(LZR)=-(RESDUE (LZR)+DMM(LZR)*EN(LZR-2))/BN(LZR) 1691
819 RETURN 1692
820 END 1693
VERSION C ENTRY ROUTINE 1694
STARTING MODEL IS READ IN FROM DATA CARDS GENERATED 1695
BY THE X-RAY DEPGSIT ROUTINE ON UNIVAC 1107 1696
FORTRAN 1697
SUBROUTINE ENTRY 1698
C STANDARO DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1699
$2 \quad D(I)=0.0$ 1700
TEE =3. $0 E+04$ 1701
READ INPUT TAPE 5. 9277.RUNID1.RUNID2.TR(NN1),TR(NN2).ENERGY.TIME. 1702
IFX, (K,R(K), DR(K), T(K),RHOZ (K),U(K),E(K),RUNID1,RUNID2.K=1,100) 1703
9277 FGRMAT(2A6.1PSE13.3/(I4.IP6E11.3.2A5]) 1704
$L Z=100$ 1705
vols 1706
WKT =ENERGY/4.18E+19 1707
TOO2 $=7100.0$ EXPF ($(0.43429$ LOGF ($\operatorname{RHOZ(99)/1.293E-03)~)/5.3)~}$ 1708
TON2 $=15000.0$ EXPF $((0.43429 * \operatorname{LOGF}(\operatorname{RHOZ}(99) / 1.293 E-03)) / 4.8)$ 1709
1019 DO $1033 \mathrm{~K}=1.100$ 1710
$1026 \mathrm{~V}(K)=1.0 / \mathrm{RHOZ}(K)$ 1711
$V R(K)=V(K)$ 1712
1027 L=K 1713
$T S(K)=T(K)$ 1714
$R 2(L)=R(L) * * 2$ 1715
1029 RZ(L)=R(L) 1716
1030 RR(L) $=1.0$ 1717
$T R(K)=T(K)$ 1718
ZMAS(K) $=($ RHOZ (K)/3.0)*((RZ(L)**3)-(RZ(L-!)**3)) 1719
$D U=U(L)-U(L-1)$ 1720
$Q(K)=-(V D /(2.0 * V(K))) \approx D U * A B S F(D U)$ 1721
$D(1)=-(V D /(2.0 * V(1))) \& U(1) \approx A B S F(U(1))$ 1722
IF(OCK) 2233.1033.1033 1723
2233 Q(K)=0.0 1724
1033 CONTINUE 1725
ZMAS (1) $=\operatorname{RHOZ}(1) *(\operatorname{R}(1) * * 3) / 3.0$ 1726
1034 WRITE OUTPUT TAPE 6.1035.TDN2.TOO2,RN2,RO2.WKT , (K.R(K).RHOZ(K), 1727
$10341 V(K) . T(K), U(K), Q(K), Z M A S(K), D R(K), D P P(K), D T A U(K, 1), T A U(K, 1), K=1$, 1728
11001 1729
1035 FGRMATE1H. $10 H I N P U T$ DATA. $10 x .5 H T O N 2=0 P F 7.1 .10 X, 5 H T O O 2=0 P F 6.1 .5 X$. 1730
1035 14HRN2=1PE9.2.5X,4HRO2=1PE9.2.5X,4HWKT=0PF7.2//4H K , 2X,4HR(L) 1731
1 . $7 \mathrm{X}, 7 \mathrm{HRHOZ}(K), 4 \mathrm{X}, 4 \mathrm{HV}(K), 7 \mathrm{X}, 4 \mathrm{HT}(K), 7 \mathrm{X}, 4 \mathrm{HU}(\mathrm{L}), 7 \mathrm{X}, 4 \mathrm{HO}(\mathrm{K}), 7 \mathrm{X}, 7 \mathrm{HZMAS}$ 1732
I(K).4X,5HDR(K),7X,6HENG(K).5X.7HDTAU(K).4X,3HTAU//(I4.1P11E11.4)) 1733
$T(101)=T(100)$ 1734
1000 RETURN 1735
END 1736

References

Blackman, V., Vibrational Relaxation in Oxygen and Nitrogen, Jour. Fluid Mech. 1, p. 61, 1956.

Brode, H., B. Whittaker, private communications, 1965.
Gllmore, F.R., Equilibrlum Composition and Thermodynamic Properties of Alr to $24,000 \mathrm{~K}$, RAND Corp. RM-1543, 1955.

Hillendahl, R.W., Approximation Techniques for Radiation-Hydrodynamics Computations, Lockheed Report 3-27-64-1, DASA 1522, 1964.

Hilsenrath, J. and C.W. Beckett, Thermodynamic Properties of Argon-Free Aır, N. B. S. Report 3991, 1955.

FIG. A-1 FINITE DIFFERENCE GRID

FIG. A-2 SCHEMATIC FLOW CHART

DISTRIBUTION LIST

No of Cys

Department of Defense:

Commander in Chief, Strategic Air Command, Offutt AFB, Nebraska 68113
Administrator, Defense Documentation Center, Cameron StationBuilding 5, ATTN: Document Control, Alexandria, Virginia 22314
Director, Defense Atomic Support Agency, Washington, D. C. 20305
Director of Defense Research \& Engineering, ATTN: Tech Library, Washington, D. C. 20301
Director, Defense Intelligence Agency, washington, D. C. 20301

Department of the Army:
Commanding General, Army Munitions Command, Picatinny Arsenal, I ATTN: Technical Library, Dover, New Jersey 07801
Commanding Officer, Army Nuclear Defense Laboratory, ATTN: 1 AMXND-NT, Edgewood Arsenal, Maryland 21010
Commanding Officer, Harry Diamond Laboratories, Connecticut Avenue \& Van Ness Street, N. W., ATTN: Technical Reference Branch, Washington, D. C. 20438
Commanding General, Army Missile Command, Redstone Arsenal, Alabama 35809
Commanding General, Army Electronics Command, ATTN: AMSEL/SMA, 1 Fort Monmouth, New Jersey 07703
Commanding Officer, U. S. Army Ballistic Research Laboratories, I ATTN: Mr. Baicy, Aberdeen Proving Ground, Maryland 21005
Commanding Officer, Army Combat Developments Command, Institute 1 of Nuclear Studies, Fort Bliss, Texas 79916
Chief of Research and Development, Department of the Army, 1 ATTN: Nuclear, Chemical-Biological Division, Washington, D. C. 20310
Commanding General, U. S. Army Materiel Command, ATTN: Nuclear l Branch, Washington, D. C. 20315
Commanding Officer, Frankford Arsenal, Bridge and Tacony Streets, 1 ATTN: Mr. A. Britten, Philadelphia, Pennsylvania 19137
Office of the Secretary of the Army, Director of Civil Defense, $\quad 1$ ATTN: Research Director, Washington, D. C. 20310

Department of the Navy:
Commanding Officer and Director, Naval Radiological Defense

Commander, Naval Ordnance Laboratory-White Oak
ATTN: Dr. Rudlin, Silver Spring, Maryland 20910
Commander, Naval Ships systems Command, Department of the Navy, ATTN: Code 0354l, Mr. L. Sieffert, Washineton, D. C. 20360

Commanding Officer and Director, Naval Applied Science Laboratory, Flushing and Washington Avenues, ATTN: Mr. W. Derksen, Brooklyn, New York ll25l
Chief of Naval Research, Department of the Navy, ATTN: Code 811, Washington, D. C. 20360
Director, Naval Research Laboratory, ATTN: Code 2029, Washington, D. C. 20390
Director, Special Projects Office, Department of the Navy, ATTN: SP-42, Washington, D. C. 20360
Commanding Officer and Director, Naval Civil Engineering Laboratory, ATTN: Code L3l, Port Hueneme, California 93041

Department of the Air Force:
Commander, Air Force Weapons Laboratory, ATTN: WLL-Technical Library, Kirtland AFB, New Mexico 87117
Headquarters, USAF, TEMPO-BLDG-8, ATTN: AFTAC/SDP-R, Washington, D. C. 20333
School of Aerospace Medicine, ATTN: Mr. E. Richey, 1 Brooks AFB, Texas 78235
Commander, Space and Missile Systems Organization, Air Force Unit Post Office, ATTN: Capt Dickison, Los Angeles, California 90045
Director, Air University Library, Maxwell AFB, Alabama 36112
Commander, Air Force Cambridge Research Laboratories, ATTN: CROR and CRZC, L. G. Hanscom Field, Bedford, Massachusetts 07130
Commander, Electronic Systems Division, L. G. Hanscom Field, Bedford, Massachusetts 01730

AEC:
Los Alamos Scientific Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87544 ATTN: Document Control ForTechnical Library
University of California, Lawrence Radiation Laboratory, Technical Information Division, P. O. Box 808, Livermore, California 94550 ATTN: Dr. Gilbert
Assistant General Manager for Military Application, U. S. Atomic Energy Commission, Washington, D. C. 20545 ATTN: Library

```
Sandia Corporation, P. O. Box 5800, Albuquerque,
    New Mexico 87116
Sandia Corporation, Livermore Laboratory,1
    P. O. Box 969, Livermore, California 94550
    ATTN: Document Control For Technical Library
```


Civilian:

RAND Corporation, 1700 Main Street, Santa Monica, California
1 90406 ATTN: Library
Aerospace Corporation, llll E. Mill Street, San Bernardino, California 92402
Lockheed Missiles \& Space Company, Division of Lockheed Aircraft Corporation, 3251 Hanover Street, palo Alto, California 94304 ATTN: Dr. R. Meyerott
Boeing Company, P. O. Box 3707, Seattle, Washington 98124 ATTN: Mr. Ed York
IIT Research Institute, 10 West $35 t h$ Street, Chicago, i Illinois 60616 ATTN: Dr. W. Christian
General Electric Company, TEMPO-Center for Advanced Studies, 1 \& 16 State Street, Santa Barbara, California 93101 ATTN: DASIAC, Mr. Warren Chan
American Science \& Engineering, Inc., 11 Carleton Street, Cambridge, Massachusetts 02138 ATTN: Dr. Jack Carpenter
Kaman Corporation, Kaman Nuclear Division, Garden of the Gods Road, Colorado Springs, Colorado 80907 ATTN: Dr. F. Shelton
EG\&G, Inc., P. O. Box 227, Bedford, Massachusetts 01730 1
Technical Operations, Inc., South Avenue, Burlington, l Massachusetts 01804 ATTN: Dr. I. Kofsky
AVCO Everett Research Laboratory, 2385 Revere Beach Parkway, 1 Everett, Massachusetts 02140 ATTN: Library
AVCO Missiles, Space \& Electronics Group Missile \& Space 1 Systems Division, 201 Lowell Street, Wilmington, Massachusetts 018 E 7
GCA Corporation, Burlington Road, Bedford, Massachusetts 01730 1 ATTN: Library
Stanford Research Institute, 333 Ravenswood Avenue, Menlo Park, $\quad 1$ California 94025 ATTN: Document Custodian, FOR: Library
General Dynamics/Convair, 5001 Kearny Villa Road, P. O. Box $112 \S, 1$ San Diego, California 92112
Martin Company, Division of Martin-Marietta Corporation, Orlando Divibion, P. O. Box 5837, Orlando, Florida 32805
Douglas Aircraft Company, Division of McDonnell-Douglas Corporation, 1 3000 Ocean Park Boulevard, Santa Monica, California 90405
Systems, Science and Software, 3347 Industrial Court, Sorrento 1 Valley Industrial Park, San Diego, California 92121 ATTN: Dr. B. Freeman

Mt. Auburn Research Associates, Inc., 12 Norfolk Street, Cambridge, Massachusetts 02139
Electro-Optical Systems, Inc., 300 North Halstead Street, Pasadena, California 91107
EG\&G, Inc., Santa Barbara Division, P. O. Box 98, Goleta, California 93017
General Electric Company, ReEntry Space Systems Department, 3198 Chestnut Street, Philadelphia, Pennsylvania 19101
Physics International, 2700 Merced Street, San Leandro, California 94577
Bell Telephone Laboratories, Inc., Whippany Road, Whippany, New Jersey 07981 ATTN: Mr. MCAffey
GRC, Inc., 6300 Hollister Avenue, Goleta, California 93105
Union Carbide Corporation, Nuclear Division, Oak Ridge National 1 Laboratory, P. O. Box X, Oak Ridge, Tennessee 37830
Applied Physics Laboratory, John Hopkins University, 8621 Georgia Avenue, Silver Springs, Maryland 20910 ATTN: Library
The Dikewood Corporation, 1009 Bradbury Drive, S. E., I University Research Park, Albuquerque, New Mexico 87106
Mitre Corporation, Rt. 62 \& Middlesex Turnpike, Bedford, Massachusetts
TRW Systems Group, 1 Space Park, Redondo Beach, California I 90278
URS Corporation, 1811 Trousdale Drive, Burlingame, 1 California 94011
Heliodyne Corporation, 11689 Sorrento Valley Road, San Diego Division, San Diego, California 9212l ATMN: Dr. J. W. Bond, Jr. l
(Security classification of tille, body of abstract and indexing annotation must be entered when the overall report ia classified)

Harold L. Brode; Richard W. H1llendahl; Rolf K. Landshoff

13. ABSTRACT
-This report introduces the reader to radiation hydrodynamics (RH) and discusses its application to fireballs in the atmosphere. After formulating the basic equations of RH , special attention is given to the radiative transfer problem. Several methods for solving the equations of transfer are touched upon but special emphasis is placed on the two stream method with a frequency averaging procedure, which is specifically designed for use with finite zone sizes. A version of the FIREBAIU code which utilizes this approach is described. The physics of fireballs is illustrated with the example of a one kiloton detonation at sea level density and without interference from the ground. Some remarks are made on scaling procedures for extending the result to higher yields and altitudes. Estimates are made of the validity of the models. () T

Unclassified
Security Classification

KEY WORDS		LINK A		LINK		Link c	
		ROLE	${ }^{4}$	ROLE	w^{T}	role	T
	Radiation hyarodynamics High temperature alr Radiative transport Strong shocks Nuclear fireball Local thermodynamic equilibrium						

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included Marking is to be in accordance with appropriate security regulations.
2h. GROUP: Automatic downgrading is specified in DOD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
2. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
4. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Ente: last name, first name, middle initial. If rilitary, show rank end branch of service. The name of the principal diathor is an absolute minimum requirement.
5. REPORT DATE. Enter the date of the report as day, menth, year; or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count shouid follow normal pagination procedures, i. e., enter the number of pages containing information.
7b. NUMEER OF REFERENCES: Enter the total number of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written
8b, $8 c, 888 d$. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
9s. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activlty. This number must be unique to this report.
6. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
7. AVALLABILITY/LIMITATION NOTICES: Enter any limdations on further dissemination of the report, other than those
imposed by security classification, using standard statements such es:
(1) 'Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from $D D C$. Other qualified $D D C$ users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
_"
(5) "All distribution of this report is controlled Qualified DDC users shall request through
\qquad
If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known
8. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
9. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (pay ing $f o r$) the research and development. Include address.
10. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the patagraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be user as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

[^0]: * DASA-1917-4, from now on referred to as (4).

[^1]: * The operator $\vec{\nabla}$ is defined in Eulerian space. In plane or spherical geometry it is well known how to express it in Lagrangian form.

[^2]: * The absorption coefficient is still meant to include the correction factor for induced emission (Eq. (2.2-1la), (2) and the prime is left out for convenience of writing only.

[^3]: * DASA-1917-3.

[^4]: * Local Thermodynamic Equilibrium (LTE).
 ** (1) stands for DASA-1917-1, etc.

[^5]: * The double subscripting, i.e. $\mathbf{A}(\mathrm{K}, \mathrm{N})$ has been carried over from an earlier version of the code in which N spectral bands were used.

